
A Comparison of Graph Optimization
Approaches for Pose Estimation in SLAM

And̄ela Jurić∗,1, Filip Kendeš∗, Ivan Marković∗, Ivan Petrović∗

∗ University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
{andela.juric, filip.kendes, ivan.markovic, ivan.petrovic}@fer.hr

INTEL MIT M3500 M3500a M3500b M3500c

Sphere-a Torus Cube Garage Cubicle Rim

Fig. 1: Two-dimensional (first row) and three-dimensional (second row) pose graphs used in the benchmarking process.

Abstract—Simultaneous localization and mapping
(SLAM) is an important tool that enables autonomous
navigation of mobile robots through unknown environments.
As the name SLAM suggests, it is important to obtain a
correct representation of the environment and estimate a
correct trajectory of the robot poses in the map. Dominant
state-of-the-art approaches solve the pose estimation
problem using graph optimization techniques based on
the least squares minimization method. Among the most
popular approaches are libraries such as g2o, Ceres,
GTSAM and SE-Sync. The aim of this paper is to describe
these approaches in a unified manner and to evaluate them
on an array of publicly available synthetic and real-world
pose graph datasets. In the evaluation experiments, the
computation time and the value of the objective function of
the four optimization libraries are analyzed.

Index Terms—pose-graph, optimization, trajectory esti-
mation, SLAM, g2o, GTSAM, Ceres, SE-Sync

I. INTRODUCTION

After years of dominance in the SLAM scene,
filter-based methods are more and more replaced by
optimization-based approaches. Pose graph optimization
(PGO) was first introduced in [1], but was not very
popular due to computational inefficiency. Today, with
the increase of the computational power, PGO methods
have become the state-of-the-art and are able to solve
SLAM optimization and estimation problems quickly and
accurately.

Optimization-based SLAM methods generally consist
of two parts. The first part identifies the constraints

1This research has been supported by the European Regional Develop-
ment Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

between new observations and the map using correspon-
dences based on sensor data. The second part computes
the robot poses and the map given the constraints. It
can be divided into graph and smoothing methods. An
example of a current state-of-the-art optimization-based
method is g2o [2]. It is a general optimization framework
for nonlinear least squares problems. One of the first
smoothing approaches,

√
SAM, was presented in [3].

An improvement to this method, incremental smoothing
and mapping (iSAM), was introduced in [4]. iSAM ex-
tends

√
SAM to provide an efficient solution to the full

SLAM problem by updating the factorization of the sparse
smoothing information matrix. The upgrade of iSAM,
iSAM2, is presented in [5]. These smoothing methods
are implemented in GTSAM [6], which is another state-
of-the-art optimization library.

An elegant example of a SLAM problem is the so-
called pose SLAM, which avoids building an explicit
map of the environment. The objective of pose SLAM
is to estimate the trajectory of the robot given the
loop closing and odometric constraints. These relative
pose measurements are usually obtained from IMU, laser
sensor, cameras or wheel odometry using ego-motion
estimation, scan matching, iterative closest point (ICP)
or some form of minimizing visual reprojection error. It
is worth noting that methods in [7] and [8] present filter-
based pose SLAM algorithms, but our focus in the current
paper is on the approaches that implement optimization-
based pose SLAM.

MIPRO 2021/RTA 1283

Among the most popular approaches are g2o ("general
graph optimization") [2]), Ceres Solver [9], GTSAM
("Georgia Tech Smoothing and Mapping") [6], and SE-
Sync ("Synchronization over Special Euclidean group
SE(n)") [10]. There are few works in the literature that
compare some of these approaches. For example, in [11]
the authors provide an overview of visual SLAM and
compare g2o, GTSAM, and HOG-Man [12] as back-ends.
The authors in [13] discuss the importance of rotation
estimation in pose graph estimation and compare g2o and
GTSAM on benchmarking datasets with different rotation
estimation techniques. In [14], the authors compare dif-
ferent optimization algorithms under g2o framework. A
unified SLAM framework, GLSLAM, proposed in [15],
provides various SLAM algorithm implementations, but
can also perform benchmarks for different SLAM ap-
proaches. However, to our knowledge, there are none
that compare g2o, Ceres, GTSAM and SE-Sync in a
unified manner. The aim of this paper is to describe these
approaches in a unified manner and to evaluate them on an
array of publicly available synthetic and real-world pose
graph datasets (visualized in Figure 1). In the future, we
would like to use this comparison to facilitate the choice
of the PGO method.

The paper is organized as follows. Section II describes
nonlinear graph optimization in general and each of these
four approaches. The experiment is the main part of this
paper and is described in Section III. In the first part of
the section, the hardware, the experimental setup, and the
benchmarking datasets are described. The results of the
experiment are discussed at the end of the section. In the
end, Section IV concludes the paper.

II. NONLINEAR POSE-GRAPH OPTIMIZATION
APPROACHES

Every pose graph consists of nodes and edges. The
nodes in a pose graph correspond to the poses of the
robot in the environment, and the edges represent spatial
constraints between them. The edges between contiguous
nodes are odometric constraints, and the remaining edges
represent loop closing constraints. This is visualized in
Figure 2a. The goal of pose graph optimization is to find
a configuration of nodes that minimizes the least squares
error over all constraints in the pose graph. In general,
a nonlinear least squares optimization problem can be
defined as follows:

x∗ = argmin
x

F(x), (1)

where F(x) is the sum of errors over all constraints in
the graph:

F(x) =
∑
〈i,j〉∈C

e>ijΩijeij . (2)

Here, C represents the set of index pairs between con-
nected nodes, Ωij represents the information matrix be-
tween nodes i and j, and eij is the nonlinear error function
that models how well the poses xi and xj satisfy the
constraint imposed by the measurement zij . Finally, each

constraint is modeled with the information matrix Ωij and
the error function eij . This is illustrated in Figure 2b.

(a)

(b)

Fig. 2: A pose-graph representation of the SLAM problem. (a) Every
node corresponds to a robot pose. Neighboring poses are connected
with edges. The edges model spatial constraints between two poses.
The edges between contiguous poses represent odometry and remaining
edges represent repeated observation of the same part of the environment
(loop closures). (b) Each edge is defined with its error function eij and
information matrix Ωij . Error function is the difference between the
real measurements zij and the approximated constraints ẑij(xi, xj).

Traditionally, the solution to (1) is obtained by it-
erative optimization techniques (e.g., Gauss-Newton or
Levenberg-Marquardt). Their idea is to approximate the
error function with its first-order Taylor expansion around
the current initial guess. In general, they consist of four
main steps:

1) Fix an initial guess.
2) Approximate the problem as a convex problem.
3) Solve 2) and set it as a new initial guess.
4) Repeat 2) until convergence.

Pose SLAM is easier to solve because it does not build
a map of the environment. Graph formulated problems
have sparse structure, so computation is faster. Another
advantage is that it is robust to bad initial guesses. The
disadvantage of pose SLAM is that it is generally not
robust to outliers and does not converge when there are
many false loop closures. Moreover, rotation estimation
makes it a hard noncovex optimization problem, so con-
vex relaxation leads to problems with local minima and
there is no guarantee of a global optimum. In this section,
we briefly describe the optimization frameworks based on
the nonlinear least squares method that provide solutions
in the form of pose graphs.

1284 MIPRO 2021/RTA

A. g2o

g2o [2] is an open-source general framework for opti-
mization of nonlinear functions that can be defined as
graphs. Its advantages are that it is easily extensible,
efficient, and applicable to a wide range of problems. The
authors state in [2] that their system is comparable to other
state-of-the-art algorithms while being highly general and
extensible. They achieve efficiency by exploiting sparse
connectivity and the special structure of the graph, using
advanced methods to solve sparse linear systems, and uti-
lizing the features of modern processors. The framework
contains three different methods that solve PGO, Gauss-
Newton, Levenberg-Marquardt and Powell’s Dogleg. It
is mainly used to solve the SLAM problem in robotics
and the bundle adjustment problems in computer vision.
ORB-SLAM ([16], [17]) uses g2o as a back-end for
camera pose optimization, and SVO [18] uses it for visual
odometry.

B. Ceres

Ceres Solver [9] is an open-source C++ library for
modeling and solving large, complicated optimization
problems. It is mainly dedicated to solving nonlinear
least squares problems (bundle adjustment and SLAM),
but can also solve general unconstrained optimization
problems. The framework is easy to use, portable, and
extensively optimized to provide solution quality with low
computation time. Ceres is designed to allow the user to
define and modify the objective function and optimization
solvers. The solvers that are implemented include trust
region solvers (Levenberg-Marquardt, Powell’s Dogleg)
and line search solvers. Since it has many advantages,
Ceres is used in many different applications and domains.
OKVIS ([19], [20]) and VINS [21] use Ceres to optimize
nonlinear problems defined as graphs.

C. GTSAM

GTSAM [6] is another open-source C++ library that
implements sensor fusion for robotics and computer vi-
sion applications. It can be used to solve optimization
problems in SLAM, visual odometry, and structure from
motion (SfM). GTSAM uses factor graphs [22] to model
complex estimation problems and exploits their sparsity
to be computationally efficient. It implements Levenberg-
Marquardt and Gauss-Newton style optimizers, the conju-
gate gradient optimizer, Dogleg, and iSAM: inceremen-
tal smoothing and mapping. GTSAM is used alongside
various sensor front-ends in academia and industry. For
instance, there is a variant of SVO [23] that uses GTSAM
as a back-end for visual odometry.

D. SE-Sync

SE-Sync [10] is a certifiably correct algorithm for
performing synchronization over the special Euclidean
group. It’s objective is to estimate the values of a set of
unknown poses (positions and orientations in Euclidean
space) given noisy measurements of relative transforma-
tions between nodes. Their main applications are in the
context of 2D and 3D geometric estimation. For example,

pose-graph SLAM (in robotics), camera motion estima-
tion (in computer vision), and sensor network localization
(in distributed sensing). Authors state in [10] that SE-
Sync improves on previous methods by exploiting a novel
(convex) semidefinite relaxation of the special Euclidean
synchronization problem to directly search for globally
optimal solutions, and is able to generate a computa-
tional certificate of correctness for the found solution.
They apply truncated-Newton Riemannian Trust-Region
method [24] to find efficient estimates of poses.

III. EXPERIMENTS

Our goal is to experimentally evaluate the optimization
frameworks described in Section II and compare them.
For this purpose, we are considering their performance
in terms of total computation time and final value of
the objective function described by (2). We use publicly
available synthetic and real-world benchmarking datasets.

A. Experimental setup

The experiment was conducted on a Lenovo ThinkPad
P50 equipped with an octa-core Intel Core i7-6700HQ
CPU operating at 2.60 GHz and 16 GB RAM. The
computer is running Ubuntu 20.04. The same solver,
Levenberg-Marquardt, is chosen for the g2o, Ceres and
GTSAM frameworks, while SE -Sync uses the Rieman-
nian trust-region (RTR) method ([24]). Each algorithm
is limited to a maximum of 100 iterations. The stopping
criteria are based on reaching the maximum number of
iterations and the relative error decrease. SE-Sync uses a
slightly different method, so an additional criterion based
on the Riemann gradient norm must be specified. The
tolerance for the relative error decrease is set to 10−5 and
the norm of the gradient is set to 10−2. The parameters
are chosen according to the recommendations in [10].
The authors in [13] study the influence of orientation
initialization on finding the global optimum. Inspired by
this work, we also do the pose graph initialization before
the optimization process. To achieve better results, we
obtain initial pose graphs using the spanning tree method
[2].

B. Benchmarking datasets

There are six two-dimensional pose graphs obtained
from [25], two real-word graphs, and four graphs created
in simulation. INTEL and MIT pose graphs are real-
world datasets created by processing raw wheel odometry
and laser range sensor measurements collected at the Intel
Research Lab in Seattle and MIT Killian Court. M3500
pose graph is a simulated Manhattan world [26]. The
M3500a, M3500b, and M3500c datasets are variants of
the M3500 dataset with Gaussian noise added to the
relative orientation measurements. The standard deviation
of the noise is 0.1, 0.2, and 0.3 rad, respectively. There
are also six three-dimensional datasets obtained from [13].
The pose graphs Sphere-a, Torus, and Cube are created
in simulation. Sphere-a dataset is a challenging prob-
lem released in [27]. The other three pose graphs are
real-world datasets. The Garage dataset was introduced

MIPRO 2021/RTA 1285

(a) (b) (c) (d)

Fig. 3: Optimized pose graphs from (a) INTEL, (b) MIT, (c) M3500 and (d) M3500a datasets. Results are color coded for each algorithm: pink -
g2o, green - Ceres, red - GTSAM, blue - SE-Sync.

g2o Ceres GTSAM SE-Sync

(a)

(b)

(c)

(d)

(e)

Fig. 4: Results on five challenging datasets: (a) M3500b, (b) M3500c, (c)
Sphere-a, (d) Cubicle, (e) Rim for each algorithm. From left to right: g2o
(pink), Ceres (green), GTSAM (red), SE-Sync (blue). SE-Sync shows
superior results, but GTSAM performs just as well on Cubicle and Rim
dataset.

in [28], and Cubicle and Rim are acquired using ICP on
point clouds from the 3D laser sensor at the RIM center
at Georgia Tech. All these pose graphs are visualized in
Fig. 1 with their odometric and loop-closing constraints.
Table I contains the number of nodes and edges for
each dataset. These numbers determine the number of
parameters in the optimization process and the complexity
of the problem.

TABLE I: Pose-graph datasets with number of nodes and edges

Dataset Nodes Edges
Sphere-a 3D 2200 8647
Torus 3D 5000 9048
Cube 3D 8000 22236
Garage 3D 1661 6275
Cubicle 3D 5750 16869
Rim 3D 10195 29743
Intel 2D 1228 1483
MIT 2D 808 827
M3500 2D 3500 5453
M3500a 2D 3500 5453
M3500b 2D 3500 5453
M3500c 2D 3500 5453

C. Results

We summarized all the performance results in Table
II in terms of total computation time and the value of
the objective function (2). For each dataset, we state
the termination reason of the algorithm. The algorithm
converges if it completes the optimization within the
maximum iteration limit. We also give the validation time
for SE-Sync to certify the global optimum. Figures 3, 4
and 5 show optimized pose graphs for the benchmarking
problems.

1) INTEL: INTEL is one of the easiest problems to
solve. All approaches have solved it successfully. The
trajectories are shown together in Figure 3a and it can be
seen that all of them achieved a similar result. GTSAM
took the longest time to finish the optimization, but
achieved the lowest objective function value. SE-Sync is
the fastest in this case and has the value slightly larger
than GTSAM. Considering this, SE -Sync seems to be
the best solution.

2) MIT: MIT is the smallest problem, but has only a
few loop closure constraints. Therefore, it is important to
start the optimization with a good initial guess. Otherwise,
GTSAM, Ceres, and g2o are not able to converge to a
meaningful solution with the Levenberg-Marquardt algo-
rithm. All algorithms converged in less than the maximum
number of iterations and they achieved almost the same
objective function values. The optimization problem is
solved in less than half a second, but Ceres and g2o are the
fastest. Ceres also achieved the lowest objective function
value and seems to be the best solver for the dataset MIT.
The final trajectories can be seen in Figure 3b.

1286 MIPRO 2021/RTA

TABLE II: Optimization times and objective values for each algorithm and dataset are organized in the table. Total time corresponds to elapsed
optimization time, and F(x) to the value of the objective function. Termination reason for each dataset is given: maximum number of iterations
reached (iter), relative function decrease (conv), divergence (no conv) and maximum level of Riemannian staircase (r max). Validation time for
SE-Sync is the time it takes for the algorithm to check the optimality of the solution. The minimum optimization time is marked in red, and the
lowest objective value is written in green. The blue color corresponds to the other minimum objective values with the poor visual representations
of the trajectory, or the same as the value marked in green.

INTEL MIT M3500 M3500a M3500b M3500c Sphere-a Torus Cube Garage Cubicle Rim

total time (s) 0.28 0.07 0.66 0.86 1.90 2.08 8.07 10.66 599.05 1.53 338.06 243.12
F(x) 6.17E+04 4.12E+01 1.38E+02 9.12E+02 9.27E+03 6.61E+03 8.58E+05 1.46E+04 4.92E+04 1.24E+00 9.38E+07 1.45E+09

termination iter conv conv conv iter iter conv conv conv conv iter iter

Ceres
total time (s) 0.04 0.06 0.23 0.31 1.56 0.76 18.87 2.04 62.59 0.73 25.66 49.82

F(x) 6.40E+05 1.89E+01 6.90E+01 4.56E+02 2.88E+03 1.86E+03 1.56E+06 1.21E+04 4.22E+04 6.34E-01 7.26E+06 1.01E+08
termination conv conv conv conv iter conv iter conv conv conv iter iter

GTSAM
total time (s) 21.55 0.16 0.41 1.23 3.88 1.30 12.16 2.34 113.89 0.66 2.54 19.41

F(x) 1.14E+02 2.06E+01 6.90E+01 4.56E+02 3.60E+07 5.33E+06 3.30E+06 1.21E+04 4.22E+04 6.34E-01 1.36E+03 4.11E+04
termination iter conv conv conv no conv no conv conv conv conv conv conv conv

SE-Sync

total time (s) 0.01 0.15 1.57 0.24 0.37 0.56 0.15 0.44 8.53 1.07 5.58 4.21
F(x) 1.97E+02 3.06E+01 9.69E+01 7.99E+02 1.84E+03 2.29E+03 1.48E+06 1.21E+04 4.22E+04 6.31E-01 3.59E+02 2.73E+03

validation (s) 0.165 1.749 15.716 1.426 52.891 10.202 0.188 0.51 14.452 5.521 12.052 35.851
termination conv conv conv conv r max conv conv conv conv conv conv conv

g2o

(a) (b) (c)

Fig. 5: Final trajectories for (a) Torus, (b) Cube and (c) Garage dataset. Color codes are the same as in Figure 3.

3) M3500: All four variants of the M3500 dataset are
presented here together. GTSAM and Ceres are the best
at solving the basic M3500 problem, as both achieve
the lowest objective function value, but Ceres is slightly
faster. All approaches were successful in solving the
problem, and their optimized pose graphs are visualized
in Figure 3c. M3500a is a more difficult problem due to
the noise added to the relative orientations. Nevertheless,
all approaches solved it, but as it can be seen in Figure 3d,
the g2o solution deviates from other solutions. Ceres
and GTSAM converged to the lowest value, but again
Ceres is faster. M3500b and M3500c are very challenging
problems because the amount of noise is high. GTSAM
does not converge in these two cases, and Ceres and
g2o get stuck in a local minimum. SE-Sync is the most
successful approach in solving these two variants of the
problem. Considering the lack of loop closure constraints
connecting the left and right parts of the pose graph, and
the amount of noise in the measurements, SE-Sync has
achieved a reasonably good solution. These pose graphs
can be seen in Figures 4a and 4b.

4) Sphere-a: The Sphere-a problem is also challenging
because high amount of noise is added to the relative
orientation measurements. Even with an initial guess, only
SE-Sync was able to solve it. It converges to the global
minimum in only 0.15 s which is 50 times faster than

g2o and 100 times faster than Ceres and GTSAM. The
optimal solution by SE-Sync is shown in Figure 4c with
local optima obtained by the other three approaches.

5) Torus: Torus is one of the easiest 3D problems. All
approaches except g2o converge to the global optimum,
but again SE-Sync wins in speed. g2o solves the problem,
but looking at Figure 5a it can be seen that its optimized
trajectory drifts slightly in comparison to the other three.

6) Cube: The cube dataset is more complex and time
consuming due to the large number of nodes and edges,
but all approaches have found a solution. SE-Sync is by
far the fastest in solving this problem. It takes 8 seconds,
while others take more than a minute. Final solutions are
shown in Figure 5b.

7) Garage: The Garage dataset is the smallest and
easiest 3D dataset to solve, for which each approach
achieved a solution. This is illustrated in Fig. 5c. Ceres,
GTSAM and SE-Sync converge to the same objective
value, and GTSAM is the fastest in this case.

8) Cubicle and Rim: The Cubicle dataset is a subset
of the Rim dataset, so we discuss them together. These
two datasets are challenging because they both contain
large number of nodes and edges. Moreover, large number
of edges are false loop closures. Only GTSAM and SE-
Sync converged to a solution in both cases. The pose

MIPRO 2021/RTA 1287

graphs after optimization are visualized in Figures 4d
and 4e. Ceres and g2o are unable to find a solution.
GTSAM solves the Cubicle two times faster than SE-
Sync, but SE-Sync converges to the global optimum. SE-
Sync optimizes the Rim five times faster than GTSAM
and converges to the global optimum.

IV. CONCLUSION

In this paper, we compared graph optimization meth-
ods used for pose estimation in SLAM. We considered
g2o and GTSAM, which are current state-of-the-art ap-
proaches, Ceres, a user-friendly open-source framework,
and SE-Sync, a novel and robust method for pose synchro-
nization. The evaluation process takes into account the
elapsed optimization time and the value of the objective
function, and the results are given in the form of a table
for twelve benchmarking datasets.

SE-Sync achieved the smallest total time on most
datasets when compared to other three methods. It is
also able to validate the certificate of global optimality if
required, but at the cost of additional computation time.
g2o had the highest total time but performed well on
simple 2D datasets. Ceres is easy to use, offers a lot of
flexibility, and is relatively fast. GTSAM performs almost
as well as SE-Sync, except on very noisy 2D datasets.
Paired with a proper front-end, these methods can be
very powerful in solving SLAM problems. For poor data
association, high noise, and a poor performing front-end,
it seems best to use SE-Sync as the back-end. With a good
initialization method, GTSAM seems to do an equally
good job. If the front-end is excellent, dataset relatively
simple, or the noise is low, it is a matter of personal
preference to decide between these back-ends. We hope
this comparison can help other researchers in choosing a
back-end method for their SLAM applications.

REFERENCES

[1] F. Lu and E. Milios, “Globally Consistent Range Scan Alignment
for Environment Mapping,” Autonomous Robots, vol. 4, no. 4, pp.
333–349, 1997.

[2] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard, “G2o: A general framework for graph optimization,” in
Proceedings - IEEE International Conference on Robotics and
Automation, 2011, pp. 3607–3613.

[3] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous
localization and mapping via square root information smoothing,”
International Journal of Robotics Research, vol. 25, no. 12, pp.
1181–1203, 2006.

[4] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[5] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,
and F. Dellaert, “ISAM2: Incremental smoothing and mapping
using the Bayes tree,” International Journal of Robotics Research,
vol. 31, no. 2, pp. 216–235, 2012.

[6] F. Dellaert, V. Agrawal, A. Jain, M. Sklar, and M. Xie, “GTSAM,”
https://gtsam.org.

[7] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly Sparse
Delayed-State Filters for View-Based SLAM,” IEEE Transactions
on Robotics, vol. 22, no. 6, pp. 1100–1114, 2006.

[8] K. Lenac, J. Ćesić, I. Marković, and I. Petrović, “Exactly sparse
delayed state filter on Lie groups for long-term pose graph SLAM,”
International Journal of Robotics Research, vol. 37, no. 6, pp.
585–610, 2018.

[9] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://
ceres-solver.org.

[10] D. Rosen, L. Carlone, A. Bandeira, and J. Leonard, “SE-Sync: A
certifiably correct algorithm for synchronization over the special
Euclidean group,” Intl. J. of Robotics Research, vol. 38, no. 2–3,
pp. 95–125, Mar. 2019.

[11] D. M. a. Latif, M. a. Megeed Salem, H. Ramadan, and M. I.
Roushdy, “Comparison of Optimization Techniques for 3D Graph-
based,” Proceedings of the 4th European Conference of Computer
Science (ECCS ’13) Recent Advances in Information Science, p.
288, 2013.

[12] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and
C. Hertzberg, “Hierarchical optimization on manifolds for online
2d and 3d mapping,” in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 273–278.

[13] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization
techniques for 3D SLAM: A survey on rotation estimation and its
use in pose graph optimization,” in Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, vol. 2015-June,
no. June. Institute of Electrical and Electronics Engineers Inc.,
jun 2015, pp. 4597–4604.

[14] H. Li, Q. Zhang, and D. Zhao, “Comparison of methods to
efficient graph SLAM under general optimization framework,”
in Proceedings - 2017 32nd Youth Academic Annual Conference
of Chinese Association of Automation, YAC 2017. Institute of
Electrical and Electronics Engineers Inc., jun 2017, pp. 321–326.

[15] Y. Zhao, S. Xu, S. Bu, H. Jiang, and P. Han, “Gslam: A general
slam framework and benchmark,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 1110–1120.

[16] R. Mur-Artal, J. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Trans-
actions on Robotics, vol. 31, no. 5, pp. 1147–1163, oct 2015.

[17] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,”
IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262,
oct 2017.

[18] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in Proceedings - IEEE International
Conference on Robotics and Automation. Institute of Electrical
and Electronics Engineers Inc., sep 2014, pp. 15–22.

[19] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear opti-
mization,” International Journal of Robotics Research, vol. 34,
no. 3, pp. 314–334, 2015.

[20] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige,
and R. Siegwart, “Keyframe-Based Visual-Inertial SLAM using
Nonlinear Optimization,” Tech. Rep., 2016.

[21] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” Tech. Rep. 4, 2018.

[22] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,”
Foundations and Trends in Robotics, vol. 6, no. 1-2, pp. 1–139,
2017.

[23] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-
Manifold Preintegration for Real-Time Visual-Inertial Odometry,”
IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, feb 2017.

[24] P.-A. Absil, C. Baker, and K. Gallivan, “Trust-region methods on
Riemannian manifolds,” Found. Comput. Math., vol. 7, no. 3, pp.
303–330, Jul. 2007.

[25] L. Carlone and A. Censi, “From angular manifolds to the integer
lattice: Guaranteed orientation estimation with application to pose
graph optimization,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 475–492, 2014.

[26] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of
pose graphs with poor initial estimates,” in Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2006,
2006, pp. 2262–2269.

[27] C. Stachniss, U. Frese, and G. Grisetti, “Openslam,” http://www.
openslam.org/.

[28] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Bur-
gard, “Autonomous driving in a multi-level parking structure,”
in Proceedings - IEEE International Conference on Robotics and
Automation, 2009, pp. 3395–3400.

1288 MIPRO 2021/RTA

https://gtsam.org
http://ceres-solver.org
http://ceres-solver.org
http://www.openslam.org/
http://www.openslam.org/

