
Analyzing Linter Usage and Warnings Through
Mining Software Repositories: A Longitudinal

Case Study of JavaScript Packages
Tjaša Heričko, Boštjan Šumak

Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
{tjasa.hericko, bostjan.sumak}@um.si

Abstract—Linters are static analysis tools supporting de-
velopers by automatically detecting possible code errors, bad
coding practices, violations of coding conventions, and styling
issues while offering actionable advice on how to resolve these
concerns to prevent inconsistencies in the codebase, errors,
and degrading software quality. They are especially beneficial
for software projects based on dynamically-typed languages,
e.g., JavaScript, which are more prone to development
errors and inconsistencies due to languages’ dynamic nature.
However, little is known about how their usage and generated
warnings evolve throughout the entire development histories
of real-world software projects. This paper performs source
code-based commit history analysis on 15 JavaScript npm
packages. The empirical analysis of 16,562 commits revealed
that the choice of linter and their configurations are rarely
subjected to change once introduced to a package. When
configurations do change, most modifications are minor.
Unresolved violations of rules, which produce warnings,
generally increase. Though, the density of warnings was
found to be slightly decreasing with the maturity of a package
– overall and for each distinct group of warnings.

Keywords—software quality assurance, static code analysis,
lint, code repositories, npm packages, JavaScript

I. INTRODUCTION

In modern software development, performing code
checks has become a vital part of the development process.
Static code analysis complements quality assurance tech-
niques, namely manual code review and testing, to provide
support for quality assessment of the code [1]–[3]. Tools
performing static analysis automatically, most commonly
referred to as automated static analysis tools (ASATs)
[2]–[5], analyze a software without having to run it [6].
Instead, ASATs work directly on a software’s code [3], [5].
They take advantage of code representations, e.g., abstract
syntax trees, by utilizing them to represent software’s code
and inspecting them to find patterns that are known to
be problematic [5], [7]. The tools define such patterns in
the form of rules, which are tool- and language-dependent
yet, in general, concerned with detecting coding mistakes,
noncompliance with best practices, and violations of cod-
ing conventions [3], [7]. If the tool detects that a rule is
violated, it generates a warning, alerting developers about
potential issues in the code [6], [7].

Developers can benefit significantly from using ASATs
as they enable early detection of quality flaws, potential
faults, and deviations from coding standards and guide-
lines. This helps them to reduce defects, prevent inconsis-

tencies, and improve the overall software quality of their
projects [1], [2], [4], [8]. Due to these benefits, developers
often define ASATs in software repositories and use them
daily in several contexts, in particular local programming,
code reviews, and continuous integration [2], [3].

With the increasing popularity of JavaScript as the
language of choice for software development [9], [10],
static analysis for JavaScript-based software has become
an active area of research in recent years. Especially
considering that its dynamic nature largely contributes
to inconsistencies [11] and proneness to coding errors
and defects [12]–[14]. In the code of dynamically-typed
languages, unexpected behavior can quickly be introduced
with simple syntactic or spelling mistakes and can go
unnoticed for a long time due to the absence of compil-
ers [11], [15]. Contrarily, in the code of statically-typed
languages, such mistakes are addressed at compile time.
Hence, software written in dynamically-typed languages
can benefit more from ASATs [3]. In the JavaScript com-
munity, ASATs performing relatively simple static analysis
to flag the aforementioned issues are referred to as linters
[11], [14], [16]. While prior work has already investigated
the adoption of JavaScript linters in practice [11], [14],
[17], [18], as well as the usage of ASATs from a long-term
perspective in general [2], [3], [5], there is a lack of empir-
ical evidence on how their usage and reports evolve in real-
world JavaScript-based software projects throughout their
entire development lifespan. To address this, this work
conducts an in-depth case study on the repository histories
of 15 open-source JavaScript npm packages, focusing on
linter usage, changes in configurations, and evolution of
generated warnings throughout packages’ development.

In summary, the main contributions of this work are:
• We present a case study on linting tools usage and

their configuration evolution based on a fine-grained
commit-level analysis of 15 JavaScript npm packages.

• We present a case study on linter warning trends
characteristics and evolution based on a fine-grained
commit-level analysis utilizing warnings generated by
the ESLint tool on 15 JavaScript npm packages.

• We build on findings from existing studies by pro-
viding a more in-depth, longitudinal perspective on
linting tool usage and warnings in the JavaScript
ecosystem throughout entire packages’ development.

MIPRO 2022/SSE 1569

II. RELATED WORK

Existing empirical studies have investigated ASATs for
different programming languages from various research
perspectives. Researchers have addressed their perception
and usage by practitioners [2]–[4], [6], [11], [14], [18],
[19], their impact on software quality [5], [7], [20], auto-
matic project-specific customization of configurations [1],
[19], capturing of warning resolution patterns [4], [21]–
[23], and their integration into development pipelines [8].

In recent years, several researchers have addressed
ASATs specifically for JavaScript code. Tómasdóttir et
al. [11] interviewed 15 developers responsible for linter
configurations in JavaScript projects, focusing on why they
use linters, how they configure them, and what challenges
they face. The study was later extended [14] with a survey
of 337 developers from the JavaScript community, further
discussing the matter, and an empirical analysis of 9,500
ESLint configuration files, exploiting the most common
linter configuration patterns. Santos et al. [17] investigated
bad coding practices in 31 JavaScript systems, while Cam-
pos et al. [16] analyzed linter rule violations in 336,000
JavaScript code snippets published on Stack Overflow.
Rafnsson et al. [15] investigated the adoption of linters for
finding and preventing security vulnerabilities. Ueda et al.
[19] proposed a method to automatically customize linter
rules to adjust to software projects’ code. While these
studies have researched various aspects of the usage of
JavaScript linters in practice, to the best of our knowledge,
no study has investigated how their usage, configurations,
and violations evolve throughout a project’s development
lifetime; the gap we aim to address with this work.
Although others have investigated evolutionary aspects of
code quality assurance in the context of JavaScript projects
[13], [18], [24], [25], this has not been yet addressed from
the point of view of linter configurations and reports.

There have been some similar retrospective studies
conducted to ours. Beller et al. [3] investigated the use of
nine ASATs and their configurations in 168,214 projects
written in Java, JavaScript, Ruby, and Python. The results
showed that 59% of the projects relied on at least one
ASAT and that 80% of configuration files never changed.
For the ones that did, the changes were small and occurred
in close time intervals. These findings were confirmed in
a later study by Vassallo et al. [2], where 56 developers
were surveyed. Half of the participants reported that
they configure ASATs at the project’s kick-off only, yet,
20% declared they modify configurations monthly. An
additional inspection of 176 open-source projects written
in Java, JavaScript, Ruby, and Python revealed that, in
general, 66% of the analyzed projects defined at least
one ASAT in their repository, while the percentage is
even higher in the case of JavaScript (81%). Another
similar study was conducted by Trautsch et al. [5]. The
authors investigated the evolution of warnings generated
by the PMD tool on 54 Java projects throughout their
development. The results showed that the warnings’ sum
increased over the years in most projects. However, as the

number of warnings was found to be correlated with the
size of the projects, the density of warnings calculated
per logical lines of code in a project was found to be
decreasing. Thus, they conclude that, on average, the
overall general quality of code is improving over time
if measured by warning density. Our study differs from
these longitudinal studies in three key aspects: (i) We
focus on JavaScript software projects only, which may
yield different results because of the differences in ASATs
for statically-typed and dynamically-typed languages. (ii)
We focus on a smaller set of projects, which allows us
to provide a more in-depth analysis. (iii) As projects are
developed iteratively, we take a closer look at the evolution
of linter usage and warnings with regard to commits,
release versions, and calendar years.

III. STUDY DESIGN

A. Objectives and Research Questions

This work sets out to address the following research
questions (RQs):

RQ1 How does linter usage evolve throughout develop-
ment in JavaScript packages?
RQ1.1 How often and when does a change in a

linter tool configured for a package occurs?
RQ1.2 How often and why do linter configurations

for a package change?

RQ2 How do linter warnings evolve throughout develop-
ment in JavaScript packages?
RQ2.1 Are linter warnings increasing throughout

development of a package?
RQ2.2 Are there differences in warning trends be-

tween distinct groups of warnings (i.e., pos-
sible logic errors, best practices, and style-
related warnings)?

B. Case Selection

To address the research questions, 15 packages were se-
lected randomly from the npm registry [26] to be included
in the case study. To ensure inclusion of the relevant case
subjects, the selection process was guided by the following
criteria: programming language (package is JavaScript-
based), code availability (code of the package is pub-
licly available on GitHub), repository activity (package’s
repository contains at least 250 commits), and maturity
(package has released at least three major versions).

C. Data Collection

For every case subject, the source code and the list
of commit history along with their metadata (contributor,
date, commit message, etc.) were collected from a GitHub
repository. Commits in the repositories are commonly
made simultaneously in the main branch and several sub-
branches, which eventually merge with the master branch.
Thus, considering all commits made while ordering them
by date could result in unwanted jumps in data as several

1570 MIPRO 2022/SSE

TABLE I: JavaScript npm packages selected in the case study with the characteristics of included commits.

PACKAGE
NPM WEEKLY
DOWNLOADS*

NUMBER OF
COMMITS

NUMBER OF
RELEASES

RANGE OF
RELEASES

TIME INTERVAL OF
RELEASES

GITHUB REPOSITORY**

ACORN 70,168,567 966 106 0.0.1–5.7.4 Sep., 2012–Mar., 2020 acornjs/acorn
ASYNC 54,083,018 1,012 85 0.1.0–3.2.2 Jun., 2010–Jan., 2022 caolan/async
BABEL LOADER 14,647,066 342 63 0.1.0–8.2.2 Oct., 2014–Oct., 2021 babel/babel-loader
CHAI 5,047,917 768 79 0.0.1–4.3.5 Dec., 2011–Jan., 2022 chaijs/chai
CSS LOADER 17,848,320 663 138 0.1.0–6.7.0 Apr., 2012–Mar., 2022 webpack-contrib/css-loader
GULP 1,448,092 755 74 0.0.1–4.0.1 Jul., 2013–May, 2019 gulpjs/gulp
HEXO 18,546 1687 136 0.0.1–6.0.0 Sep., 2012–Jan., 2022 hexojs/hexo
INQUIRER 25,326,691 499 87 0.0.0–6.0.0 May, 2013–Jun., 2018 SBoudrias/ Inquirer.js
JS YAML 47,644,947 1,073 75 0.0.1–4.0.0 Oct., 2011–Apr., 2021 nodeca/js-yaml
MOCHA 6,408,988 2,574 184 0.0.0–9.2.0 Aug., 2011–Feb., 2022 mochajs/mocha
NODEMAILER 1,918,883 727 223 0.0.0–6.7.1 Jan., 2011–Nov., 2021 nodemailer/nodemailer
QS 65,720,585 622 84 0.0.0–6.9.7 Jul., 2014–Jan., 2022 ljharb/qs
RIOT 5,582 2,697 202 0.9.10–6.1.1 Feb., 2014–Jan., 2022 riot/riot
TAPE 663,533 696 133 0.0.0–5.5.1 Nov., 2012–Feb., 2022 substack/tape
WS 56,806,584 1,481 155 0.0.1–8.5.0 Nov., 2011–Feb., 2022 websockets/ws

* Data was collected from the npm package registry on Feb. 27, 2022. ** Packages’ repositories are available at https://github.com/.

different variations of the source code exist at the same
time. As this work aims to analyze the evolutionary trends,
a single sequence of commits with consecutively made
commits over time was selected instead, following the
procedure conducted by Trautsch [5]. We started from
the oldest commit available on the master branch, moving
up in the parent-child-structured commit history graph by
selecting the first parent of each commit, finishing at the
newest available commit on the master branch. For each
commit, package version specified in the package.json

file was extracted. Versions were represented using seman-
tic versioning in the form of Major.Minor.Patch, e.g., 2.0.1
(note that pre-release identifiers were discarded). Commits
that did not include the package version were omitted. A
more detailed overview of packages and their development
history included in the case study is presented in Table I.

1) RQ1: To capture the usage and configurations of
linters in each package, the commits were mined. We
limited our analysis to four linting tools, i.e., ESLint,
JSLint, JSHint, and JSCS, the most commonly used linters
in the JavaScript community based on prior conducted
study [3]. To answer RQ1.1, the introduction or removal
of any of the four analyzed linters was extracted with the
help of the git log command and captured changes to
specified "dependencies" or "devDependencies" fields in
the package’s package.json file. To answer RQ1.2, the
introduction, change, or removal of configurations files
of any of the four analyzed linters were captured using
the git log command and detected changes to config-
urations files. For each linter, relevant files where their
configurations can be specified were considered – for ES-
Lint configurations are placed inside "eslintConfig" field in
the package.json file or in the .eslintrc.{js, cjs,

json, yaml, yml} file, for JSHint configurations are
placed inside "jshintConfig" field in the package.json

file or in the .jshintrc file, and for JSCS configu-
rations are placed in the .jscsrc.{js, json, yaml}

file. The two processes were fully automated using Bash

and Python3 scripts. To ensure the correctness of the data
collection processes, manual validation was conducted.

2) RQ2: To answer RQ2, each commit was traversed
and analyzed using ESLint v8.10.0. We chose the ES-
Lint tool as it is the most commonly used linter in the
JavaScript ecosystem [2]. In the static analysis, files with
non-production code were ignored – directories with files
containing test code (test, tests, coverage), docu-
mentation files (doc, docs, examples), distribution files
(dist, releases, min), etc. ESLint was run with a preset
of rules eslint:all, which includes 262 rules regarding
possible problems (56 rules), best practice suggestions
(144 rules), and rules related to layout and formatting of
the code (62 rules). With this data collection process, we
extracted warning count per commit on two granularity
levels: warning count of each of the three groups of distinct
types of warnings and total warning count. In addition,
for counting lines of code, CLOC v1.92 was used. Again,
scripts were used to automate the process and manual
inspection was done to check for possible anomalies.

D. Data Analysis

1) RQ1: Qualitative data analysis and simple descrip-
tive statistics were performed on the collected data.

2) RQ2: Additional metric – warning density – repre-
senting a ratio between warning count and software size
was calculated for each commit as the count of warnings
per 1,000 lines of code. To assess the normality of the data
distribution, the Kolmogorov-Smirnov test was used. The
non-parametric Spearman’s correlation coefficient (ρ) was
then utilized to determine the correlation between software
size and warning count. Trend analysis was done using the
Mann-Kendall test, a non-parametric test for monotonic
trends, to analyze how the warnings evolve. Sen’s slope
estimator (β) was used to estimate the magnitude of the
trends. For assessing the differences in trends between
groups of warnings, the Marginal homogeneity test and
the Wilcoxon signed-rank test were used.

MIPRO 2022/SSE 1571

IV. RESULTS AND DISCUSSION

A. RQ1: Linter usage evolution

Out of 15 case subjects, only 1 did not include any linter
throughout its development. The remaining 14 defined at
least one linter early in development (6 packages defined
(first) linter within a year from kick-off) or over the course
of development. Only one linter was configured throughout
development in 5 packages, two different linters were
configured in 3 packages, three linters in 5 packages,
and four linters in 1 package. The configuration of mul-
tiple linters in a package repository was done either as
separately configured linters in mutually exclusive time
periods or a combination of linters in the same period.
ESLint and JSLint were mainly used alone; any overlap
with other linters was short and a part of a transitional
period. In contrast, JSCS was often combined with JSHint.
The inclusion of JSLint, JSHint, or JSCS in packages’
repositories was relatively short, on average 2, 1.3, and 1.6
years, respectively. ESLint is the current linter specified
in the latest version of the codebase in 14 packages and
has been up to the latest version, on average, included for
5.1 years. Among all packages that replaced a linter, we
observe two general movements: from JSLint to JSHint,
and from JSHint to ESLint. In addition, all migrations
to ESLint happened at a similar time, between April
2015 and October 2016. Moreover, among packages that
configured only one linter, ESLint was included in reposi-
tories between June 2015 and May 2018. This shows that
packages generally move to linters which provide more
rules and configuration options, confirming the assump-
tion already made by Kavaler et al. [18]. More detailed,
package-specific results are presented in Appendix A.

Out of 28 configuration files related to linters specified
by our case subjects, 25 were modified after their introduc-
tion. On median, 15 changes overall, i.e., 1.9 changes per
year of linter usage, were made to configurations through-
out the development of a package. Although previous stud-
ies have shown that ASATs are commonly adopted without
modifications to default configurations [3], a higher rate
of configuration changes was found for JavaScript linters.
However, most changes were minor, as 91% of these
changes were smaller changes to global options or changes
to a few rules. Only 9% could be considered major, where
a complete set of rules was changed, which could greatly
affect developers’ tool usage. In addition, changes related
to modifying linter configuration files represent, on me-
dian, only 1.4% of all commits made to our case subjects
(without considering commits related to the introduction
and removal of these files). It is interesting to note that
changes to configurations were often made by the same
contributors – on median, by only 5.5% of all contributors.
Most changes (57.1%) happened because of addition, dele-
tion, or adjustment to rules. Some changes (33.7%) were
made to modify global configuration options, including
global variables, environments, and ignore patterns. A few
changes (9.2%) occurred due to organizational or stylistic
changes to configuration files.

RQ1.1 Out of 15 packages, 9 configured more than
one linter throughout their development. The changes
in linters are scarce and predominantly due to general
movements to more advance linters, e.g., from JSHint
to ESLint. RQ1.2 Most linter configurations (89.3%)
were modified at least once after their introduction
to a package repository. Yet, these changes did not
happen often. When they did, 91% of them were
minor and mainly aimed to add, delete, or adjust rules.

B. RQ2: Linter warnings evolution

In Table II, the results of the trend analysis are pre-
sented. In 13 out of 15 case subjects, the number of warn-
ings has an overall monotonic upward trend throughout
development. From a more short-term perspective, where
commits of each case subject are grouped by major release
version, an increasing trend was found in 74.3% of release
versions. In a study by Trautsch et al. [5], the absolute
number of warnings per commit was found to be positively
correlated with lines of code in Java projects (ρ=0.72,
p=0.00). Our study on JavaScript packages showed an
even stronger positive correlation (ρ=0.95, p=0.00). Thus,
as packages grow in terms of code size, the number of
generated linter warnings generally increases. Investigat-
ing warning evolution through warning density revealed
that 13 subjects out of 15 were found to have a consistent
downward warning density trend throughout development.
This shows that, in general, packages are improving in
terms of generated warnings per line of code. By grouping
commits of each case subject by major release version, a
decreasing trend was found in 44.6% of release versions.
There is no consensus across all case subjects that would
indicate similar trends in release versions.

For most subjects, the three groups of warnings had the
same warning trends, i.e., if the warning count trend was
upward for warnings related to best practice suggestions,
the same was true for styling-related warnings. The group
of warning with possible errors was found to be the
most different among the three as differences to the other
two groups were found in 6 and 3 subjects for warning
count and density trend, respectively. The only statistically
significant difference in overall trends was found in terms
of warning count between warnings regarding possible
errors and best practice suggestions (p=0.02), where more
warnings related to possible errors decreased rather than
increased compared to the other group. In Table III,
the pairwise analysis of the differences in trends’ slopes
between groups of warnings is presented. The magnitude
of the trend is significantly different between most pairs.
The highest positive slope of the warning count trend was
found for warnings related to stylistic issues (M=8.23),
followed by best practices (M=1.2) and possible logic
errors (M=0.00). Similarly, the highest negative slope of
the warning density trend was found for stylistic issues
(M=-0.4), followed by best practices (M=-0.25) and
possible errors (M=-0.02). This shows that, in general,

1572 MIPRO 2022/SSE

TABLE II: Monotonic warning trends overall and per major releases.

WARNING DENSITY TREND PER MAJOR RELEASES
PACKAGE

WARNING COUNT
TREND

WARNING DENSITY
TREND R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

ACORN pos. (Z=41.83, β=8.76) neg. (Z=-32.66, β=-2.83) neg. pos. pos. pos. neg. neg.
ASYNC pos. (Z=27.09, β=14.59) neg. (Z=-16.43, β=-0.20) neg. neg. pos. n.s.
BABEL-LOADER pos. (Z=20.98, β=2.07) neg. (Z=-8.86, β=-2.63) neg. / / / n.s. n.s. neg. neg. pos.
CHAI pos. (Z=38.08, β=41.12) pos. (Z=26.96, β=2.22) pos. neg. n.s. pos. neg.
CSSLOADER pos. (Z=32.69, β=6.95) neg. (Z=-26.21, β=-3.24) neg. pos. neg. pos. neg. n.s. neg.
GULP neg. (Z=-18.75, β=-0.42) neg. (Z=-19.17, β=-1.42) pos. / pos. neg. neg.
HEXO pos. (Z=17.13, β=9.80) neg. (Z=-15.91, β=-0.45) pos. neg. pos. neg. pos. pos. /
INQUIRER pos. (Z=18.18, β=7.48) neg. (Z=-12.63, β=-0.60) n.s. neg. n.s. pos. pos. n.s. /
JSYAML n.s. (Z=1.33, β=1.58) neg. (Z=-8.10, β=-0.42) pos. pos. pos. neg. /
MOCHA pos. (Z=26.51, β=8.09) neg. (Z=-13.35, β=-0.47) neg. n.s. neg. n.s. neg. neg. neg. neg. neg. neg.
NODEMAILER pos. (Z=11.62, β=8.31) neg. (Z=-23.51, β=-2.96) neg. pos. neg. neg. neg. / pos.
QS pos. (Z=30.50, β=3.05) pos. (Z=6.87, β=0.23) neg. pos. pos. n.s. n.s. pos. n.s.
RIOT pos. (Z=52.32, β=32.35) neg. (Z=-27.89, β=-0.44) n.s. n.s. neg. pos. pos. pos. pos.
TAPE pos. (Z=34.57, β=2.15) neg. (Z=-30.23, β=-0.65) neg. neg. neg. neg. neg. neg.
WS pos. (Z=3.11, β=0.67) neg. (Z=-33.86, β=-1.04) pos. neg. neg. pos. n.s. pos. neg. neg. neg.

pos.=positive (p≤0.05) neg.=negative (p≤0.05) n.s.=not significant (p>0.05) /=cannot be determined (n<8)

warnings related to code style increased the most in terms
of absolute count throughout development and decreased
the most in terms of warning count per line of code.

TABLE III: Pairwise differences in overall warning
trends’ slopes between the three groups of warnings.

WARNING COUNT
SLOPE DIFFERENCE

WARNING DENSITY
SLOPE DIFFERENCE

Errors–Best practices Z=-3.29, p=0.00* Z=-2.22, p=0.03*
Best practices–Styling Z=-3.01, p=0.00* Z=-1.02, p=0.31
Styling–Errors Z=-3.24, p=0.00* Z=-2.50, p=0.01*

* Statistically significant results (p≤0.05)

RQ2.1 Warnings are generally increasing through-
out development with package size. However, warn-
ings per line of code are decreasing in most cases.
RQ2.2 There are rarely any differences in trends
among distinct groups of warnings, though the mag-
nitude of their trends significantly differs.

V. CONCLUSION

In this work, we investigated software repositories of
15 JavaScript-based npm packages to improve our under-
standing of how linter usage and warnings evolve in the
real world. There are several additional aspects studies
could address in the future. Firstly, a similar study on
linter warnings could be conducted, but rather than using
the same preset rules for all projects, project-defined rules
could be used to investigate if this study setting would
yield different conclusions. Secondly, a survival analysis
of linter warnings would provide some additional under-
standing of when a particular rule violation is introduced,
how long it persists in the code, and when it is resolved.
Furthermore, future research could investigate the relation-
ship between linter warnings and external quality factors.

A. Threats to Validity

Findings are based on a limited set of JavaScript pack-
ages, and further studies are needed to verify the general-
izability of these findings. To reduce the threat related to
selection bias, our case subjects consist of a diverse set of
projects in terms of size and domains used. All subjects are
open-source. As such, its generalizability to closed-source
projects might be limited. Though, the open-source nature
of the included subjects facilitates the study’s replicability.
In the context of RQ1, the scope of the targeted linters is
limited to the four most popular linters. We expect similar
results to be observed even if more linters were included.
However, additional research is required to confirm this.
We noticed that several packages rely on external presets
of rules; thus, all changes in rules followed by a package
might not be reflected by the package’s repository itself.
As our study does not consider changes not included in a
package’s repository, this is a limitation of our study. In
the context of RQ2, we observe linter warnings reported
by one linter only – ESLint. Replication studies are needed
to confirm and generalize the findings with other linters.

ACKNOWLEDGMENT

The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No.
P2-0057).

REFERENCES

[1] F. Zampetti, S. Mudbhari, V. Arnaoudova, M. Di Penta,
S. Panichella, and G. Antoniol, “Using code reviews to automati-
cally configure static analysis tools,” Empirical Software Engineer-
ing, vol. 27, no. 1, pp. 1–30, 2022.

[2] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empirical Software Engineering, vol. 25, no. 2,
pp. 1419–1457, 2020.

[3] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, vol. 1, 2016, pp. 470–481.

MIPRO 2022/SSE 1573

[4] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and
G. Pinto, “Are static analysis violations really fixed? a closer look
at realistic usage of sonarqube,” in IEEE/ACM 27th International
Conference on Program Comprehension, 2019, pp. 209–219.

[5] A. Trautsch, S. Herbold, and J. Grabowski, “A longitudinal study
of static analysis warning evolution and the effects of pmd on soft-
ware quality in apache open source projects,” Empirical Software
Engineering, vol. 25, no. 6, pp. 5137–5192, 2020.

[6] M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in IEEE/ACM International
Conference on Automated Software Engineering, 2016, pp. 332–
343.

[7] A. Trautsch, S. Herbold, and J. Grabowski, “Static source code
metrics and static analysis warnings for fine-grained just-in-time
defect prediction,” in IEEE International Conference on Software
Maintenance and Evolution, 2020, pp. 127–138.

[8] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in
continuous integration pipelines,” in IEEE/ACM 14th International
Conference on Mining Software Repositories, 2017, pp. 334–344.

[9] GitHub, “The 2021 state of the octoverse,” 2022, [Online]. Avail-
able: https://octoverse.github.com/.

[10] StackOverflow, “2021 developer survey,” 2022, [Online]. Available:
https://insights.stackoverflow.com/survey/2021.

[11] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “Why and how
javascript developers use linters,” in 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017, pp. 578–
589.

[12] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “Javascript errors
in the wild: An empirical study,” in IEEE International Symposium
on Software Reliability Engineering, 2011, pp. 100–109.

[13] D. Johannes, F. Khomh, and G. Antoniol, “A large-scale empirical
study of code smells in javascript projects,” Software Quality
Journal, vol. 27, no. 3, pp. 1271–1314, 2019.

[14] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “The adoption
of javascript linters in practice: A case study on eslint,” IEEE
Transactions on Software Engineering, vol. 46, no. 8, pp. 863–891,
2020.

[15] W. Rafnsson, R. Giustolisi, M. Kragerup, and M. Høyrup, “Fixing
vulnerabilities automatically with linters,” in Network and System
Security: 14th International Conference. Berlin, Heidelberg:
Springer-Verlag, 2020, pp. 224–244.

[16] U. Ferreira Campos, G. Smethurst, J. P. Moraes, R. Bonifácio,
and G. Pinto, “Mining rule violations in javascript code snippets,”
in IEEE/ACM 16th International Conference on Mining Software
Repositories, 2019, pp. 195–199.

[17] A. Santos, M. Valente, and E. Figueiredo, “Using javascript static
checkers on github systems: A first evaluation,” in Proccedings
of the 3rd workshop on software visualization, evolution and
maintenance, 09 2015, pp. 33–40.

[18] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool choice
matters: Javascript quality assurance tools and usage outcomes in
github projects,” in IEEE/ACM 41st International Conference on
Software Engineering, 2019, pp. 476–487.

[19] Y. Ueda, T. Ishio, and K. Matsumoto, “Automatically customizing
static analysis tools to coding rules really followed by developers,”
in IEEE International Conference on Software Analysis, Evolution
and Reengineering, 2021, pp. 541–545.

[20] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some sonarqube issues
have a significant but small effect on faults and changes. a large-
scale empirical study,” Journal of Systems and Software, vol. 170,
p. 110750, 2020.

[21] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Am-
patzoglou, “How do developers fix issues and pay back technical
debt in the apache ecosystem?” in IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering, 2018,
pp. 153–163.

[22] N. Imtiaz, B. Murphy, and L. Williams, “How do developers act on
static analysis alerts? an empirical study of coverity usage,” in IEEE
30th International Symposium on Software Reliability Engineering,
2019, pp. 323–333.

[23] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, vol. 47, no. 1, pp. 165–188, 2021.

[24] D. Mitropoulos, P. Louridas, V. Salis, and D. Spinellis, “Time
present and time past: Analyzing the evolution of javascript code in
the wild,” in IEEE/ACM 16th International Conference on Mining
Software Repositories, 2019, pp. 126–137.

[25] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empir-
ical study of code smells in javascript projects,” in IEEE 24th
International Conference on Software Analysis, Evolution and
Reengineering, 2017, pp. 294–305.

[26] “npm registry,” 2022, [Online]. Available: https://www.npmjs.com/.

APPENDIX

A. Linter tool usage evolution of each case subject

The evolution of linter tool usage in each package
included in the case study was found to be as follows:
• ACORN: ESLint was added in v4.0.11 (Mar., 2017).
• ASYNC: JSLint (using nodelint package) was added in

v0.1.16 (Jan., 2012). The linter was replaced by JSHint
and JSCS in v0.9.2 (May, 2015). In v2.0.0 (Jun., 2016),
the two linters were replaced by ESlint.

• BABEL LOADER: JSHint and JSCS were configured in
v5.1.3 (Jun., 2015). Migration to ESLint (using babel-
eslint package), was done in v6.2.7 (Nov., 2016).

• CHAI: No linter has been configured in the package’s
repository throughout the entire development history.

• CSS LOADER: ESLint was added in v0.26.1 (Jan., 2017).
• GULP: In v2.1.0 (Nov., 2013), JSHint was configured.

In v3.8.11 (Feb., 2015), JSCS was added to the pack-
age. Shortly after that, in v3.9.0 (Sep., 2015), ESLint
replaced JSHint. Yet, JSCS was not removed until v4.0.0
(Avg., 2018).

• HEXO: JSHint (using grunt-contrib-jshint package) was
added in v2.4.5 (Feb., 2014). In v3.1.1 (Sep., 2015),
ESLint and JSCS were included instead of JSHint.
JSCS was later removed in v3.4.4 (Jan., 2018), whereas
ESLint is used up to the latest version.

• INQUIRER: At development start, in v0.0.0 (May, 2013),
JSHint (using grunt-contrib-jshint package) was config-
ured. In v0.12.0 (Mar., 2016), it was replaced by ESLint.

• JS YAML: JSLint was specified early in development, in
v0.3.1 (Dec., 2011). However, it was removed in v0.3.7
(Jul., 2012) and replaced by JSHint. Note that JSHint
was not defined in the package’s package.json file.
However, the migration to JSHint was reflected by the
commit message ("Replace jslint with jshint") and the
establishment of JSHint configuration files. In v3.2.7
(Apr., 2015), JSHint was replaced by ESLint.

• MOCHA: In v2.2.5 (Jun., 2015), ESLint was added.
• NODEMAILER: JSHint (using grunt-contrib-jshint pack-

age) was added in v1.0.0 (Jun., 2014) and removed
in v2.0.0 (Dec., 2015) when ESLint (using grunt-eslint
package) was configured.

• QS: At project kick-off, in v0.0.0 (Jul., 2014), JSHint
was configured. However, it was removed a day later
in v1.0.4 (Jul., 2014). ESLint was then introduced in
v6.0.1 (Dec., 2015).

• RIOT: Shortly after the beginning of development, in
v0.9.8 (Feb., 2014), JSHint was specified. In v2.0.9
(Feb., 2015), JSCS was also added. Both linters were
replaced by ESLint in v2.0.10 (Feb., 2015).

• TAPE: ESLint was introduced in v4.9.2 (May, 2018).
• WS: In v1.1.0 (Jun., 2016), ESLint was configured.

1574 MIPRO 2022/SSE

