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Abstract—Automatic arrhythmia detection methods are a very
significant area of computational ECG analysis. This field has
been researched for a long time, however, there are various
challenges still faced. Some of the main flaws in current ECG-
based arrhythmia classification research are limited variety of
datasets used and varying experimental setups, which makes
it difficult to directly compare different methods. Most often,
a method is evaluated on a specific dataset and task (set of
arrhythmia classes). By placing these methods under unified
evaluation setup (one umbrella), we can apply (evaluate) them
on a wider range of datasets and tasks than they were originally
proposed for. To address these challenges, in this paper, we
perform benchmarking of some of the most significant deep-
learning based methods for arrhythmia detection. These methods
are compared on four datasets, considering the most significant
state-of-the-art arrhythmia classification tasks. Included are the
data from the CinC2017 and CPSC2018 challenges, as well as
two recently published large-scale ECG arrhythmia datasets: the
PTB-XL and the Shaoxing Hospital Database. The analyses cover
a wide range of both morphological and rhythmic arrhythmias,
all while focusing on methods suitable for single-lead analysis.
In addition, the classification performance on 12-lead data and
single-lead data is compared and discussed.
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I. INTRODUCTION

Arrhythmia detection is the most significant and widely
researched ECG application area. Various heartbeat abnor-
malities are known as arrhythmias under one name. These
abnormalities are detected by medical professionals using
ECG due to its simplicity and non-invasive nature. There
are two main categories of arrhythmias. The first type is
called morphological arrhythmias and are characterized by the
irregularity of a single heartbeat. The second type are the so-
called rhythmic arrhythmias, characterized by a set of irregular
heartbeats. The corresponding arrhythmia detection tasks are
known as form and rhythm tasks, respectively. The devel-
opment of automatic ECG-based heartbeat classification and
arrhythmia detection methods represents a large portion of the
research involving computational methods for ECG analysis.
The research on this topic has involved some standard methods
in the past, such as frequency analysis [1], wavelet transform
[2] and template matching [3]. In recent years, the focus has
started to shift towards machine learning methods [4], with the
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majority of state-of-the-art arrhythmia detection studies now
using deep learning (DL) techniques. Convolutional neural
networks (CNNs) are commonly used for all learning tasks
related to images and signals, including ECG. CNNs have
been used for arrhythmia detection on a wide range of datasets,
evaluation scenarios, as well as various target class groupings
[5, 6, 7, 8].

The research in the area of arrhythmia detection has been
mostly focused on classifying the heartbeats in the MIT-
BIH Arrhythmia database [9] in the 5 groups of arrhythmias
established by the Association for Advancement of Medical
Instruments (AAMI) [10]. Some studies report almost perfect
results for this specific problem, for example, the study in
[11] reports overall precision and recall of around 96-97%.
However, this is achieved using the intra-patient evaluation
paradigm and does not reflect a realistic scenario. Due to this
variability in the evaluation procedures employed, some of
which are highly flawed, as well as the limited number of test
subjects in this public database, there is still a need for further
research before employing automatic machine learning models
for detecting arrhythmias in clinical practice. Standardization
of the evaluation procedure, as well as including representative
heartbeats from a variety of data sources, instead of only one
database, is necessary to further advance the research area of
heartbeat classification for arrhythmia detection.

In recent years, besides the MIT-BIH database, several new
databases have been established as highly notable regarding
the number of subjects involved or the type of arrhythmia
included. Some of them have been the subject of the recent
prominent CinC/Physionet [12] or China Physiological Signal
challenges [13]. Recently made public databases have drawn
much attention with the high number of patient measured for
12-lead ECG, like the PTB-XL database [14] and the Chapman
University and the Shaoxing People’s Hospital database [15].
Therefore, benchmarking these datasets with the currently
most significant deep-learning based methods for arrhythmia
detection under unified evaluation setup (one umbrella) is the
main challenge in this paper. The analyses will cover a wide
range of both heartbeat form and heart rhythm classes, with
the focus on tasks for single-lead analysis.

The rest of this paper is structured as follows. Section II
describes the ECG databases and defines the investigated
arrhythmia tasks. Section III presents the experimental design,
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including the preprocessing pipeline, the selected DL archi-
tecture for the benchmarking tasks, and the unified evaluation
procedure. The obtained results are presented and analyzed in
Section IV. Finally, Section V concludes the paper.

II. ECG DATABASES AND ARRHYTHMIA TASKS

In this paper, we use 4 databases that contain annotations for
arrhythmia types: CinC/Physionet Challenge 2017 Database
[12], China Physiological Signal Challenge 2018 Database
[13], Chapman University and Shaoxing People’s Hospital
Arrhythmia Database [15], and PTB-XL Database [14]. Each
of this databases contains short-term ECG measurements,
ranging from a few seconds up to a few minutes, while the
majority of the recordings is 10 seconds long. Common for
these databases is that each short measurement is from a
different person and each measurement is annotated with one
or a few arrhythmia labels, referring to the entire measurement.
These databases were mainly chosen due to their wide use in
arrhythmia detection literature and their size. Included here
are one single-lead database and three 12-lead databases,
however in all cases we perform benchmarking for single-lead
classification methods. For this purpose, we always choose
lead II from 12-lead databases to simulate the use of single-
lead sensor, since it has been shown as the best-performing
lead [7].

Arrhythmia detection is commonly treated as a supervised
machine learning task, more specifically as a classification
task. Each of these databases is associated with one or two
arrhytmhia tasks (set of arrhythmia classes), which will be
used here for benchmarking. An overview of the most common
arrhythmia types (classes) and their abbreviations, as well as
whether they are related to heartbeat morphology or heart
rhythm, is given in Table I. The classes in each task are
given in Table II, while more details about each dataset and
corresponding task(s) are given in the subsections below.

A. CinC/Physionet Challenge 2017 (CinC2017)

The dataset used in the Atrial Fibrilation (AFIB) Clas-
sification Challenge in 2017 [12], organized by PhysioNet
and CinC, is one of the most widely used datasets for the
development of AFIB detection methods, establishing itself as
an AFIB benchmark dataset after the challenge [16]. The data
for the challenge consisted of a collection of 8528 recordings,
lasting from 9 seconds to 60 seconds. Each recording included
one non-invasive ECG signal sampled at 300 Hz, which was
obtained using a mobile ECG recording device – Alivecor
KardiaMobile [12]. The recordings were obtained while the
users held the two electrodes of the device in one hand
each, creating a lead I (LA - RA) equivalent ECG. Many
of the ECGs in the dataset were inverted (RA - LA) since
the device did not require the user to have the electrodes
in any particular orientation. This dataset contains only 4
labels: Normal, AFIB, Other and Noise. The class ”Other”
covers a wide range of abnormal non-AFIB rhythms. This
four-class classification task for AFIB detection, from the 2017

CinC/Physionet Challenge, is the first task considered in this
paper. In Table II, it is referred to as CinC2017 task.

B. China Physiological Signal Challenge 2018 (CPSC2018)

The China Physiological Signal Challenge [13] has been
organized every year since 2018, with the dataset of the first
year being continuously used ever since for validation of
arrhythmia detection methods, especially those attempting to
utilize all 12 ECG leads [17, 8]. This database was collected
from 11 hospitals and contains 12-lead ECG recordings lasting
from 6 to 60 seconds. The recordings were sampled at 500 Hz
and were taken from 3178 female and 3699 male patients. This
dataset covers a wide range of significant arrhythmia types,
including bundle branch blocks (LBBB and RBBB), prema-
ture beats (PVC and PAC), atrioventricular blocks (AVB1)
and atrial fibrillation (AFIB). All 9 classes comprising the
CPSC2018 task can be found in Table II.

C. PTB-XL Database

The PTB-XL database [14] is a large dataset by
Physikalisch-Technische Bundesanstalt (PTB) in Germany,
collected between 1989 and 1996, but it was made publicly
available in 2020. It consists of 21,837 12-lead ECG record-
ings from 18,885 distinct patients, which were sampled at 500
Hz, each lasting 10 seconds. The database contains 71 different
statements, whereas at least one statement is assigned to each
recording as a recording-level annotation. The statements are
divided into three categories: diagnostic, form and rhythm. The
authors propose multiple classification tasks on this database
[17], however we choose the form and rhythm tasks, since
they contain finest granularity of arrhythmia types. The 15
form classes and 12 rhythm classes in the PTB-XL benchmark
tasks are given in Table II.

D. Chapman University and Shaoxing People’s Hospital Ar-
rhythmia Database (ARR10000)

This database is among the first to include a very large
number of individual subjects (more than 10,000), which is
significant for many computational ECG analysis applications,
including arrhythmia detection. It was collected by the Chap-
man University and the Shaoxing People’s Hospital [15], and
contains 12-lead ECG signals sampled at 500 Hz. The signals
are short, each 10 seconds in duration. The database includes
11 heart rhythms, significantly covering a few types of not very
common supraventricular tachycardia (SVTA). In addition,
it also includes a wide range of form labels, however the
authors propose the use of this database foremost for rhythm
classification tasks [15]. They present two options: a finer-
grained 11-class rhythm task and 4-class merged rhythm task.
Both of them are given in Table II, where the subclasses of
the merged arrhythmia task are given in brackets.

III. EXPERIMENTAL DESIGN

In this paper, we perform benchmarking of state-of-the-
art deep learning pipelines for arrhythmia classification. Each
pipeline consists of data preparation procedure and is aimed
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TABLE I. ARRHYTHMIA TYPES DICTIONARY AND CATEGORIZATION

Heartbeat morphology Rhythm

NORM - normal sinus beat SR - sinus rhythm
∼(Noise) - signal noise SI - sinus irregularity
AVB1 - first-degree atrioventricular block SARRH - sinus arrhythmia
LBBB - left bundle branch block beat STACH - sinus tachycardia
RBBB - right bundle branch block beat SBRAD - sinus bradycardia
PAC - premature atrial contraction PACE - normal functioning artificial pacemaker
PVC - premature ventricular contraction SVARR - supraventricular arrhythmia
STD - ST segment depression BIGU - bigeminal pattern
STE - ST segment elevation SVTAC - supraventricular tachycardia
ABQRS - abnormal QRS PSVT - paroxysmal supraventricular tachycardia
VCLVH - voltage criteria (QRS) for left ventricular hypertrophy TRIGU - trigeminal pattern
QWAVE - Q wave present AFIB - atrial fibrillation
LOWT - low amplitude T-waves AFLT - atrial flutter
NT - non-specific T-wave changes SVT - supraventricular tachycardia
LPR - prolonged PR interval AT - atrial tachycardia
INVT - inverted T-waves AVNRT - atrioventricular node reentrant tachycardia
LVOLT - low QRS voltages in the frontal and horizontal leads AVRT - atrioventricular reentrant tachycardia
HVOLT - high QRS voltage SAAWR - sinus atrium to atrial wandering rhythm
TAB - T-wave abnormality
PRC(S) - premature contraction(s)

TABLE II. ARRHYTHMIA DETECTION TASKS; MULTIPLE LABELS COMPOSING ONE CLASS ARE GIVEN IN BRACKETS

Task No. Classes Classes

CinC2017 4 NORM, AFIB, OTHR, ∼(Noise)

CPSC2018 9 NORM, AFIB, AVB1, LBBB, RBBB, PAC, PVC, STD, STE

PTB-XL Form 15 ABQRS, PVC, STD, VCLVH, QWAVE, LOW, NT , PAC, LPR, INVT, LVOLT, HVOLT, TAB , STE, PRC(S)

PTB-XL Rhythm 12 SR, AFIB,STACH, SARRH, SBRAD, PACE, SVARR, BIGU, AFLT, SVTAC, PSVT, TRIGU

ARR10000 Rhythm 7 NORM, SI, SBRAD, AFIB, AFLT, STACH, SVT

ARR10000 Rhythm Merged 4 (NORM, SI), (SBRAD), (AFIB, AFLT), (STACH, SVT, AT, AVNRT, AVRT, SAAWR)

for a specific frequency. The most important part of the
pipeline is the deep learning architecture. Each of these
pipelines is originally proposed for specific dataset and task.
This paper aims to apply the methods in these pipelines
to multiple datasets and tasks, under a unified evaluation
setup. The methods in the pipeline, more specifically the data
preparation and the neural network architecture, as well as the
evaluation setup, are given in the sections below.

A. Data Preparation

Since we are focusing on deep learning methods, raw data
is fed to the neural network, which means that complex data
preprocessing or feature engineering is not necessary. We still
need to modify the ECG data to a format suitable to serve as
neural network input. This means that the ECG signals need
to be normalized and re-sampled to the frequency the neural
network was designed for. In addition, each input has to be of
the same length, which is achieved by either cropping longer
ECG segments or zero-padding the shorter ones. The actual
frequency used in the neural network input, as well as the
length of the signal, varies in each pipeline.

In most cases, the entire ECG segment, sometimes cropped
or padded, serves as input. This type of input vector generation
is referred to as sequence segmentation in our experiments.
Alternatively, a sliding window approach can be used, where
smaller windows are fed in the network. A prediction is

obtained for each window separately, and then those predic-
tions are aggregated to get a single prediction for the entire
measurement. In these cases, a sliding window of 2.5 seconds
is used, with 50% overlap.

B. Deep Learning Architectures

We use three main neural network architectures for the ex-
periments in this paper. First is the residual network (ResNet),
whose variations have been used in multiple arrhythmia de-
tection works [5, 6, 18]. Next, we include the winning model
of the 2018 China Physiological Signal Challenge (CPSCWin-
nerNet) [8], and finally, a novel architecture with a residual-
based temporal attention block (RTA-CNN) [16], proposed for
the CinC2017 dataset. We do not apply each architecture to
each task, since our main aim is to try to confirm the reported
state-of-the-art results under a unified evaluation setup.

The ResNet we use consists of residual blocks with con-
volutional layers. Different works have used very similar
variations of the ResNet architecture [5, 17], however we use
the implementation described in [18]. This architecture was
intended for single-lead ECG with a sampling frequency of
250 Hz and uniform input length of 60 seconds.

CPSCWinnerNet [8] consists of convolutional blocks
(CNNs), gated recurrent units (GRUs) and an attention layer.
It is designed to be used for 12-lead ECG data, however it
can be modified to work with a single-lead ECG as well.
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The proposed architectures consists of filters intended for
500 Hz input data. The input signal should be 144 seconds
long, which is the longest recording length in CPSC2018
dataset. The winning model scores are obtained with an
ensemble of 12-lead and single-lead models in order to get
the final predictions, however here we only experiment with
the architecture itself applied to single-lead ECG.

The third architecture used in this paper, RTA-CNN archi-
tecture with exponential nonlinearity loss (EN-loss), has been
proposed for the CinC2017 challenge task and dataset. It is a
residual network with RTA blocks utilizing temporal attention
mechanisms. The authors also propose a novel EN-loss. It
was originally used on single-lead CinC2017 data, sampled
at 300 Hz and limited to 30 seconds input length. Recordings
shorter than 30 seconds are expanded by replicating, and for
those longer than 30 seconds, a random 30-second segment is
chosen. This method is different to the simple cropping and
zero padding used in the other methods and is referred to as
repeatcrop later in the results.

All networks were trained for a maximum of 300 epochs,
using early stopping on a validation set. We used a batch size
of 128 and Adam optimizer with a learning rate of 0.0001.
The implementation1 was done in Python 3.8 with Tensorflow
2, and trained on an Nvidia GeForce RTX 3090 GPU.

C. Evaluation Procedure

The aim of this paper is to compare arrhythmia classification
methods under a unified setting. In order to achieve this,
most important is a fair and unified evaluation procedure,
which gives a realistic estimate of the model performance.
In this paper, we use a stratified 10-fold cross-validation. In
each iteration, 8 folds are used for training, one is used for
validation and one for testing. The scores presented in the
results section are average scores over all folds on the test set.
The validation sets are used for early stopping of the neural
network training. This procedure is applied to each dataset and
each task.

D. Evaluation Metrics

In order to measure the performance of classifiers quantita-
tively, multiple metrics can be calculated. When an imbalanced
dataset is in question, as is the case of most diagnostic
classification tasks, the accuracy is not very indicative of
model performance. More important are the true positive rate
(TPR) and positive predictive value (PPV) of each class, which
are combined in the F1 score. In addition, the area under ROC
curve (AUC) is another strong classification metric. Macro-
averaged scores are preferred in imbalanced classification
tasks, so in this paper we compare the methods using macro
F1 score and macro AUC. It should be noted that in some
cases only one of these metrics is reported in the reference
paper and only that one can be used for comparison.

1The code is available on: https://github.com/elenamer/ecg classification
DL

IV. RESULTS AND DISCUSSION

In this section, we will present and discuss the results from
the benchmarking experiments described in this paper. An
overview of the classification settings included in this paper
is given in Table III. The results for the CinC2017 Challenge
Dataset are given in Table VI, for the CPSC2018 Database in
Table IV, for PTB-XL in Table V, and for ARR10000 in Table
VII, including scores for different classification tasks relevant
for each dataset. AUC and F1 scores are shown, in addition
to ACC included for comparison, in the cases where ACC is
reported in the original paper. As described in the previous
sections, the methods are compared under a unified training
and evaluation setup, using only a single ECG lead, while
the reported state-of-the-art results are sometimes referring to
models using all 12 leads.

The results for CinC/Physionet Challenge 2017 are given
in Table VI. The reference scores are given in the last two
rows, where the last row is referring to the overall winner
of the challenge [19]. This challenge-best method used a
complex classification pipeline including expert feature extrac-
tion, abductive interpretation and extensive data preprocessing,
including data relabeling and lead inversion. As a result, it
achieves an F1 score of 0.831, which is significantly higher
than all of the methods that we chose to benchmark. The
method that we want to compare with is RTA-CNN [16] (given
in the second last row), which achieves accuracy of 0.83 and
does not report the corresponding F1 or AUC scores. We were
able to achieve the same accuracy using the CPSCWinnerNet
architecture, however our experiments did not reproduce the
reported result with the RTA-CNN architecture and repeatcrop
data preparation technique, as described in [16].

The China Physiological Signal Challenge 2018 results are
given in Table IV. In this table, we can observe that with the
same CPSCWinnerNet architecture [8] an F1 score of 0.7287
is achieved. This is comparable with their best single-lead
reported result of F1 score (0.75). The winning score is much
higher, F1 of 0.837, however it is obtained with an ensamble
of many 12-lead and single-lead models. Since our goal is
to benchmark the methods under the same set of conditions,
we only perform experiments with the architectures without
additional ensemble or complex data preprocessing techniques.

The PTB-XL benchmark paper [17] includes the PTB-XL
form and PTB-XL rhythm tasks. The reported results are on
12-lead data using the ResNet architecture, with the scores on
both tasks reported in Table V. Our benchmarking experiments
with both traditional ResNet and CPSCWinnerNet showed that
with ResNet we were able to achieve better scores on the PTB-
XL Rhythm task than those reported (F1 of 0.4673 as opposed
to 0.4190). However, we did not come close to the state-of-
the-art for the PTB-XL form task, with an F1 of 0.1795, which
is significantly lower than the reported 0.2823. It should also
be noted that the best-performing ResNet scores are obtained
with full-sequence input, as opposed to the sliding window
segmentation used in the PTB-XL benchmarking paper.

The fourth dataset, Chapman University and Shaoxing Peo-
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TABLE III. OVERVIEW OF THE CLASSIFICATION SETTINGS USED IN THIS PAPER

Model ResNet CPSCWinner RTA-CNN

Task

CPSC2018, PTB-XL Rhythm,
PTB-XL Form, ARR10000

Rhythm and ARR10000
Rhythm Merged

CPSC2018, CINC2017, PTB-XL
Rhythm, PTB-XL Form,
ARR10000 Rhythm and

ARR10000 Rhythm Merged

CINC2017

Segmentation sequence and sliding window sequence repeatcrop and sequence

Frequency 250Hz 500Hz 300Hz

Reference [18, 17] [8] [16]

ple’s Hospital Arrhythmia Database (ARR10000), is bench-
marked on two tasks proposed by the database’s authors [15]:
ARR10000 Rhythm and ARR10000 Rhythm Merged. The
results on these two tasks are given in Table VII. The results
from the same two models and pipelines on single-lead ECG,
same as for the other datasets, are shown. The results reported
in one of the first papers using this dataset are also given in
this table for reference. We can see that both CPSCWinnerNet
and ResNet achieve higher scores than the reference reported
result on the extended rhythm task, with a significantly higher
F1 of 0.8834. On the reduced ARR10000 Rhythm Merged
task, our benchmark methods achieve similar results to those
reported in literature.

The most important findings from this paper are summarized
in Fig. 1, where the reported and obtained F1 scores for
each dataset and task can be compared. We can see that on
both tasks in the ARR10000 database, as well as for rhythm
classification on PTB-XL, our state-of-the-art methods, chosen
due to their performance on other datasets and tasks, achieve
higher scores than those currently reported in literature. Fur-
thermore, we achieved lower, but comparable results both on
the CinC2017 and CPSC2018 challenge datasets. Regarding
the PTB-XL form task, our setup resulted in significantly
lower scores than those obtained in the PTB-XL benchmarking
paper. Since this task covers a very wide range of fine-grained
ECG form abnormalities, not found in any of the other tasks,
this low score could indicate that in order to classify these
arrhythmia types, all 12 leads are necessary. In all other tasks,
mainly consisting of rhythm classes, single-lead models have
performed well, with scores comparable to 12-lead models.

When comparing the performances of the different deep
learning architectures, ResNet and CPSCWinnerNet result in
similar scores on the PTB-XL rhythm task, both ARR10000
tasks and the CPSC2018 task. This proves that these architec-
tures are able to successfully capture both heartbeat morphol-
ogy and rhythm abnormalities. RTA-CNN, on the other hand,
is the significantly weaker architecture, which indicates that
the novel RTA block is not as robust as the well-established
standard residual blocks, found in ResNet, and the recurrence-
based networks with attention, like CPSCWinnerNet.

V. CONCLUSION

We have benchmarked four most prominent ECG arrhyth-
mia databases (CinC2017, CPSC2018, PTB-XL, ARR1000)
with the currently most significant deep-learning methods for

0.00
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1.00

CINC2017 CPSC2018 PTB-XL Form PTB-XL 
Rhythm

ARR10000 
Rhythm

ARR10000 
Rhythm 
Merged

Our best (single-lead) Reported (12-lead) Reported (single-lead)

Results on 6 SOTA benchmark tasks

Figure 1. Comparison of the best F1 scores obtained with
the benchmarking approach and the state-of-the-art (SOTA)
F1 scores reported in literature

arrhythmia detection (ResNet, CPSCWinnerNet, RTA-CNN)
by placing them under unified evaluation setup (one umbrella).
While doing so, we consider the most significant state-of-the-
art arrhythmia classification tasks: form and rhythm detection.
The results have shown that some of the selected deep learning
architectures can achieve even better performance on some
datasets when compared to the results reported in the original
benchmark paper. This confirms that standardization of the
evaluation procedure should be seen as a necessity to further
advance the research area of arrhythmia detection.
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