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Abstract - Chest X-ray is an imaging technique that 
plays an important role in pneumonia diagnosis. Owing to 
the high availability of medically-oriented image datasets, 
great success can be achieved using convolutional neural 
networks (CNNs) in the recognition and classification of 
these images. Since previous research has shown CNNs to 
perform as well as the best clinicians in diagnostic tasks, 
they caused great excitement among researchers. In this 
paper, convolutional neural network (CNN) machine 
learning (ML) model was built using a supervised dataset. 
The dataset used contained both pneumonia and non-
pneumonia images, which the model had to classify 
correctly. In the end, the model is demonstrated to have 
achieved satisfactory results, with the high accuracy of 
90.38%, 98.21% recall and 87.84% precision. 

Keywords – convolutional neural network, classification, 
deep learning, X-ray imaging 

I. INTRODUCTION 
Due to the rapid development of the X-ray imaging 

technique, the physiological state of tissues in the human 
body can now be examined noninvasively. Since every 
imaging examination should always begin with 
conventional radiography, X-ray imaging has been the 
main diagnostic method for diagnosing pneumonia since 
its inception.  

The growing availability of electronic medical data is 
a great opportunity to discover and develop new 
healthcare-related technologies. However, as standard 
systems and programs are incapable of handling such 
large datasets, new computational techniques are required 
for data scientists to use this data. This is where artificial 
intelligence (AI) and machine learning can be of 
assistance.  

Image classification is one of the most challenging 
problems in healthcare. It essentially aims to classify 
medical images into different categories which would help 
physicians with diagnosis and further examinations. 
Classification is usually performed by extracting certain 
features from the image and classifying images based on 
those features. 

Until now, physicians have relied on their professional 
experience to extract important features - usually a 
laborious and time-consuming task. In that respect, deep 
learning (DL) has become one of the hottest research 
areas in computer science and computer applications. [1] 

Hence, the goal of this study was to evaluate the 
performance of a neural network (NN) using X-ray 
images, and most importantly, to determine whether a 
patient has pneumonia or not based on the images fed to 
the model. For this concept to be tested, 5856 X-ray 
images were used, previously graded by expert physicians. 
The results presented in the following sections, 
demonstrate the proof-of-concept principle using DL 
method for radiological image feature extraction, which 
can later be used for x-ray image classification. 

II. DATASET ANALYSIS 
 

Images used in this project were taken from the 
Kaggle website. Kaggle is an online community of data 
scientists, where users can download or publish datasets, 
as well as build ML models in a web-based environment 
and collaborate with other data scientists.  [2] 

 
Dataset is divided into 3 sets: 'train', 'test' and 

'validation'. Each of these sets contains subfolders 
Pneumonia/Normal. Dataset structure is illustrated in 
Figure 1. 

 
Figure 1. Dataset structure 

 
It needs to be emphasized that patients whose images 

were used in the dataset are children aged 1-5. Images 
were taken in the Guangzhou Women and Children’s 
Medical Center in China. Prior to being included in the 
Kaggle dataset, images were preprocessed, quality 
screened and all low quality scans removed. Furthermore, 
they were graded by expert physicians before taking them 
into account for the Kaggle upload. 

 
Folder ‘train’ has the size of 1.07 GB, and, as visible 

in the Figure 1., 1341 and 3875 images in the subfolders 
‘PNEUMONIA’ and ‘NORMAL’, respectively. Folder 
‘test’ has the size of 75.3 MB, with 234 images in folder 
‘NORMAL’ and 390 images in folder ‘PNEUMONIA’. 
Folder ‘val’ is the smallest, having the size of 2.88 MB, 
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containing 8 images in the folder ‘NORMAL’ and 8 
images in the folder ‘PNEUMONIA’. As these statistics 
indicate that the dataset structure did not correspond to 
the recommended 60%-20%-20% ratio of training-test-
validation data, further dataset balancing could 
presumably improve evaluation metrics. Likewise,  the 
dataset was skewed since there are considerably more 
pneumonia than normal lung images. The ratio is 
approximately 72% to 28% in favor of pneumonia 
images. A 50% to 50% ratio would, in all likelihood, 
provide a better model. 

III. TECHNOLOGY BEHIND MACHINE LEARNING 
 
ML algorithms can be divided into two categories: 

unsupervised and supervised. Unsupervised learning is 
known for feature extraction, and supervised learning 
builds the relationship between input (e.g. patient traits) 
and output (outcome of interest), and is used in predictive 
modelling. There are also other types like semi-
supervised and weakly-supervised learning. [3] 

 
The model used in this project was built using 

supervised learning that requires „training“ data to be 
labeled (tagged with the correct answer). E.g. if there is 
known set of columns with a new column to be predicted, 
a reference column is needed, for comparing predicted 
values with the new column values.  

Moreover, the model is built using the CNN, since it 
is the most commonly used algorithm today for computer 
vision, combining high performance and execution speed. 
Figure 2 shows the comparison between various ML 
algorithms used in computer vision.  

 
Figure 2. The most popular ML algorithms used for medical 

purposes [3] 

A. Neural Network architecture 
NN is actually a set of algorithms, operating similarly 

to the human brain (emulating brain’s cognitive, i.e. 
pattern-recognition skills). Just like the human brain 
interprets sensory data, NN functions like a black box, 
taking inputs like x-ray images and processing them into 
one of the multiple outputs, in this case, classes.  The 
inputs taken are numerical, contained in vectors, into 
which all data (e.g. images, sound, text, etc.) entering an 
NN must be translated. NN has numerous small units 
called neurons, grouped into layers mutually connected 
by neurons. NN architecture is depicted in Figure 3, 
where the first layer is the input layer which takes inputs 
such as images, hidden layers (all the layers between 

input and output layer) where computation is done, and 
the output layer that produces the result for an input:  

 
Figure 3. Neural network architecture [4] 

 
Neurons are connected with neurons from other layers 

through weighted connections. As every weighted 
connection has a real-valued number attached, the neuron 
actually takes the value of the connected neuron and 
multiplies it with the connections weight. That sum of all 
connected neurons is called neurons’ bias value. Bias 
value is mathematically transformed by putting it through 
the activation function, which is then assigned to the 
connected neuron in the connected layer. Activation 
function ‘decides’ whether a neuron should be activated 
or not (based on its weighted sum), thus introducing non-
linearity. [5]  

Operations performed by neurons are presented in 
Figure 4:  

 
Figure 4. Operation performed by neurons [6] 

 
In this respect, NN can be thought of as a filter which 

calculates possibilities, and the challenge is to obtain the 
correct neuron values (weights) that would allow the 
correct results to be computed. These weights are found 
by optimization functions. 

B. Convolutional Neural Network architecture 
Deep Learning (DL) is a subfield of ML based on 

learning multiple levels of representations by making a 
hierarchy of features where the higher levels are defined 
from the lower levels and the same lower level features 
can help in defining many higher level features. [7] 

In the same manner, Deep Neural Network (DNN) is 
a variation of an NN with more than one hidden layer. 
Each of these hidden layers trains on a distinct set of 
features based on the previous layer’s output. The more 
hidden layers there are in the DNN, the more complex are 
the features the nodes (neurons) can recognize, thus 
creating a better network. 

One of the best DL algorithms that continuously 
proves its ability of diagnosing medical images with 
substantial performance is CNN. Its main characteristic is 
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its ability to learn features automatically from domain-
specific images (unlike the classical ML methods). [8] 

For example, a CNN was used to detect patients 
suffering from COVID-19, using computorized 
tomography (CT) images. [9] 

CNNs are a class of DNNs, and are designed 
specifically for computer vision. Their name is derived 
from convolutional layers. The goal of the CNN is to 
shrink images into a more easily processed form, without 
losing the essential features critical for making 
predictions. The aforementioned convolutional layer is 
the main building block of the CNN. Although its 
parameters include learnable filters with a small receptive 
field (similar to the human visual cortex neurons), they 
span full input volume depth. [10] 
This process is best illustrated if one imagines a flashlight 
illuminating only a part of an image, like in Figure 5. It is 
important to note that for a computer, an image is nothing 
more than a pixel of values:  

 

 
Figure 5. Convolution operation [11] 

 
Therefore, input image is represented by a 5x5 matrix 

on the left. Our kernel/filter is a 3x3 matrix (flashlight) 
that shifts along the input matrix (stride value) and 
produces a new matrix on the right. Convolutional filters 
can be abstractly described as feature identifiers, with 
features represented by edges, colors, curves, etc. When 
an image is too large, a pooling layer is used which 
essentially reduces parameter number, and is represented 
in Figure 6:  

 

 
Figure 6. Max pooling [11] 

 
Another important layer is ReLU layer, using an 

activation map to set negative values to zero (or another 
number, depending on ReLU type), thus increasing the 
nonlinear properties of the decision function. [12]  

Hence, at first, convolutional layers detect edges and 
curves, but for the network to be able to detect higher 
level features (such as eyes or ears - if a human face has 
to be detected), a fully-connected (FC) layer is needed. It 
takes the inputs and outputs of an N-dimensional vector, 
where N is the number of classes to be predicted (in this 
case two). Consequently, the FC layer determines which 
features correlate the most with a particular class. A 
classic CNN architecture would look like this:  

 
Figure 7. CNN architecture [13] 

 
Finally, there is an FC output layer which makes the 

final prediction, as depicted in the Figure 7. [13] 

IV. BUILDING THE MODEL 
 
Our program code for this project, written in Python 

using Jupyter Notebook environment, which will be 
described here, can be found on Github. [14]  
Model building commences with the libraries 
importation. Table I describes the standard libraries used. 

 
TABLE I.  IMPORTED STANDARD LIBRARIES 

Library Description 
os OS operations: reading files, changing or 

making a directory, etc. 
random generates random numbers 
matplotlib  library for creating visualizations 
cv2 used for reading, displaying images, saving 
pandas used for data analysis and modeling 
numpy support for arrays and matrices  

 
Then ML libraries like Keras and Tensorflow were 

imported.  
• TensorFlow - library for DL model production.  
• Keras - an API built on TensorFlow, used to 

build and test NNs.  
 

As for image preprocessing, images are resized and 
casted to float datatype for normalization, labels (0 and 1) 
are added subsequently and added to an array. Figure 8. 
illustrates this process (pseudo-code): 

 

 
Figure 8. Image preprocessing (pseudocode) 

The data is augmented with ImageDataGenerator 
class, usually used for artificial dataset expansion and the 
improvement of a model’s ability to generalize what it 
has learned to new images. This is achieved through the 
use of image rescaling, flipping and viewing at a different 
magnification scale (zoom). 
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Following preprocessing and data augmentation, an 
input function is required to return the tensor, i.e. to 
instantiate the Keras tensor. In Table II, convolutional 
layers and pooling attributes are explained. 

 
TABLE II. IMPORTED CONVOLUTIONAL LAYERS 

Function Description 
conv2D creates 2D kernel convolved with 

input to produce an output. It is a 
traditional convolution - filter 
sliding through the image 

SeparableConv2D variation for faster computing  
MaxPool2D used to down-sample an input 

(image) and reduce dimensionality.  
 

Figure 9. shows the first convolutional layer: 
 

 
Figure 9. Instantiating the first convolutional layer 

 
Another four convolutional layers were used, as well 

as functions that enable the use of higher learning rates; 
which in return accelerates the learning process. This 
architecture is in many respects similar to the architecture 
advocated by Yann LeCun in the 1990s for his image 
classification model (with the exception of  LeakyReLU). 

 
Activation function used was PReLU (Parametric 

ReLU). As previously mentioned, activation functions are 
an important NN feature. They decide whether a neuron 
should be activated. 'Activation' is used to determine an 
output (like yes/no). ReLU is the most commonly used 
activation function, especially in CNNs. Since ReLU is 
linear for all positive values and zero for all negative 
values: 

• model training is computationally cheaper 
• convergence is  accelerated 

 
By contrast, Leaky ReLU has a small slope for negative 
values, instead of zero, which accelerates the training 
process. Although Parametric ReLU (PReLU) is a variant 
of LeakyReLu, instead of having a predetermined alpha 
value of e.g. 0.3, it is learned automatically by NN. The 
difference between ReLU, LeakyReLU and PReLU is 
illustrated in Figure 10, where ReLU (presented as a blue 
line) follows the y=0 axis, LeakyReLU is depicted as a 
red line, and PreLU as a yellow line.  
 

 
Figure 10. ReLU, LeakyReLU and PreLU [15] 

 

Adam, an adaptive learning rate optimization 
algorithm designed specifically for training DNNs, was 
used as an optimization function for identifying the best 
possible weights. [16] 

 
 The Keras library implements numerous functions for 

creating and performing various operations with the ML 
model. Core layers like Dense, Flatten and Dropout are 
imported, and explained in Table III. 

 
TABLE III. IMPORTED CORE LAYERS 

Layers Description 
Dense Used when association exists between features. 

Feeds all outputs from the previous layer to all 
of its neurons - each neuron provides one 
output to the next layer 

Flatten Converts pooled feature map to a single column 
that is passed to the FC layer. Flattening 
removes all but one dimension. Later it is 
passed to the Dense layer. 

Dropout A regularization technique, random neurons are 
ignored (dropped-out) during training. When a 
neuron is dropped, another takes its place,  
reducing the network’s sensitivity to neuron 
weight and improving generalization 

BatchNormalization, which accelerates the learning 
process by maintaining the activation standard deviation 
close to 1 and the mean activation close to 0, is also used. 
Pixel intensity in grayscale images (used in the project) 
varies from 0 to 255. Prior to inputting an image to NN, 
every image is transformed to an array (1D), hence every 
pixel enters one neuron from the input layer. If each 
neuron output is passed to a function, every value other 
than 0 (i.e. 1 to 255) will be reduced to a number between 
0 and 1. Normalizing pixel values before training is 
common practice. [17] 

 
The FC layer is the last layer in the model. Overfitting 

was reduced by regularization, i.e. L2 regularization, 
which forces the weights to take smaller values. In the 
output layer, activation is set to 'sigmoid', because the 
problem is a binary (two-class) classification. Sigmoid 
activation function exists only in the area between 0 and 
1 and is therefore suitable for binary classifications. 

Upon its completion, the model is compiled and run 
using the model.compile(  ) function. Before that, certain 
functions  are applied during the training, called 
callbacks. Callback is a class called at various training 
stages. It interacts with the model during the training 
process. Two attributes of this class are 
ModelCheckpoint, which saves the best model obtained 
during training, and ReduceLROnPlateau which monitors 
a metric and reduces the learning rate if the metric stops 
improving. Callbacks are used because learning rate 
reduction is frequently beneficial for ML models. 
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V. RESULT EVALUATION 
 
Once the model is built, prediction model training 

takes place, shown in Figure 11, with some additional 
arguments set, e.g. the number of training epochs, etc. 

 

 
Figure 11. Model training 

 
The results were evaluated using two graphs 

presented in Figure 12. The graphs show the accuracy 
and loss of the model over a fixed number of epochs. 

 

 
Figure 12. Accuracy and loss visualization 

 
Figure 13 shows model performance evaluation using 

a series of metrics, like accuracy, precision, recall, etc. 
 

 
Figure 13. Model metrics 

 
In this respect, the model given was concluded to be 

converging and classify X-ray images with 90.38% 
accuracy. The model’s precision was 87.84%, and a 
model producing no false positives would have the 
precision of 1, or 100 %. Therefore, a higher number of 
false positives is clearly present. There were 53 false 
positive results, i.e. 53 people diagnosed with a disease 
were actually healthy. Recall lies at 98.21%, indicating a 

very low number of false negative diagnoses – only 
seven. F1 score is 91.68%, which is usually considered an 
excellent result.  

The model could definitely be enhanced by further 
adjustment of parameters, layers etc. Since train accuracy 
was 94.45% and test accuracy 90.38%, there was 
probably some model overfitting. As techniques like 
ReduceLRonPlateau, dropouts and L2 regularization 
(which prevent overfitting) were used, other techniques, 
like training the model with more data or dataset 
balancing  (with respect to the number of images) could 
be applied. 

 

VI. COMPARING ACTIVATION FUNCTIONS 
PERFORMANCE 

 
In this section, the difference between applying 

different rectified activation functions in CNN, namely, 
between ReLU, Leaky ReLU and PReLU, will be 
presented. Since ReLU is one of the most frequently used 
activation functions for ML applications, LeakyReLU can 
usually be found in the best Kaggle competition projects 
and PReLU is a variant of LeakyReLU. Performance  
differences were established using different activation 
functions. Comparison is given in Table IV. 

 
Table IV. Activation function comparation 

Activation 
function 

Training 
accuracy 

Test 
accuracy 

Training 
loss 

Test 
loss 

ReLU 0.9460 0.8750 0.1952 0.5904 
LeakyReLU 
(α = 0.3) 0.9378 0.8894 0.2106 0.2640 

LeakyReLU 
(α = 30.0) 0.9372 0.8702 0.2296 0.2754 

PReLU 0.9445 0.9038 0.2088 0.3339 
 
A total of four models implementing different 

activation functions were built. The same preprocessing, 
regularization techniques, layers and the same number of 
epochs were used in all models. Therefore, the only 
difference between them was the usage of different 
rectified activations. Their performance was compared 
and the best model chosen for the final model. 

 
As anticipated, the results were extremely similar, 

with PReLU achieving the best result. Other types of 
rectified activations were found to outperform ReLU in 
the image classification task, achieving similar 
performance as models created by Xu, Wang et al., 
described in 'Empirical Evaluation of Rectified 
Activations in Convolution Network' on CIFAR-100 and 
CIFAR-10 networks. [18] 

 
Since PReLU outperformed the other 2 functions, 

achieving the highest accuracy and satisfactory loss, the 
activation function used in the project was PReLU.  
Hence, although ReLU is the most commonly used 
function, better alternatives exist, depending on the 
dataset.  
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Since there exist considerably larger datasets than the 

one used here, the performances of these functions on 
them are still to be investigated. However, the results 
suggest that this issue is worth pursuing in the future. 

VII. COMPARING RESULTS WITH THE REFERENCE MODEL 
 

To check the performance of the created model, it had 
to be compared with a reference model. As there are 
neither ongoing nor completed Kaggle competitions for 
this dataset, this type of comparison was impossible. The 
reference model was found online. A Kaggle user  used a 
CNN based on residual NN, or ResNet. A residual NN is 
an NN, the architecture of which is based on constructs 
known from pyramidal cells in the cerebral cortex. 
ResNet is typically implemented with double or triple 
layer architecture using a ReLu activation function and 
batch normalizations. In this reference model, the data 
were augmented in a different manner and trained using a 
different DL library - fastai. The exact same dataset was 
used. 

 
After preprocessing images in the similar manner as 

in our project, and conducting a 12-epoch training, the 
aforementioned reference model achieved the accuracy of 
90.86 %, as seen in Figure 14: [19] 

 

 
Figure 14. Reference model performance 

 
Since the original model created in the project 

achieved the accuracy of 90.38%, it was found to be 
satisfactory and achieve acceptable metrics. 

CONCLUSION 
In this paper, a medical image classification algorithm 
based on neural networks was presented. This project 
shows the true power of machine learning in real-life use.  
Since the model clearly has satisfying metrics such as 
accuracy, precision, F1 score etc., it could, with further 
parameter adjustment (which would resolve the issue of 
overfitting), be used in a real-life environment. The 
findings of published papers that neural networks can be 
of exceptional help in healthcare, have been repeated and 
confirmed. 
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