
Using Convolutional Neural Network for Chest
X-ray Image classification

Matija Sorić 1,2, Danijela Pongrac 1, Iñaki Inza 2
1 Zagreb University of Applied Sciences, Zagreb, Croatia

2 University of the Basque Country, Donostia-San Sebastián, Spain
msoric@tvz.hr

Abstract - Chest X-ray is an imaging technique that
plays an important role in pneumonia diagnosis. Owing to
the high availability of medically-oriented image datasets,
great success can be achieved using convolutional neural
networks (CNNs) in the recognition and classification of
these images. Since previous research has shown CNNs to
perform as well as the best clinicians in diagnostic tasks,
they caused great excitement among researchers. In this
paper, convolutional neural network (CNN) machine
learning (ML) model was built using a supervised dataset.
The dataset used contained both pneumonia and non-
pneumonia images, which the model had to classify
correctly. In the end, the model is demonstrated to have
achieved satisfactory results, with the high accuracy of
90.38%, 98.21% recall and 87.84% precision.

Keywords – convolutional neural network, classification,
deep learning, X-ray imaging

I. INTRODUCTION
Due to the rapid development of the X-ray imaging

technique, the physiological state of tissues in the human
body can now be examined noninvasively. Since every
imaging examination should always begin with
conventional radiography, X-ray imaging has been the
main diagnostic method for diagnosing pneumonia since
its inception.

The growing availability of electronic medical data is
a great opportunity to discover and develop new
healthcare-related technologies. However, as standard
systems and programs are incapable of handling such
large datasets, new computational techniques are required
for data scientists to use this data. This is where artificial
intelligence (AI) and machine learning can be of
assistance.

Image classification is one of the most challenging
problems in healthcare. It essentially aims to classify
medical images into different categories which would help
physicians with diagnosis and further examinations.
Classification is usually performed by extracting certain
features from the image and classifying images based on
those features.

Until now, physicians have relied on their professional
experience to extract important features - usually a
laborious and time-consuming task. In that respect, deep
learning (DL) has become one of the hottest research
areas in computer science and computer applications. [1]

Hence, the goal of this study was to evaluate the
performance of a neural network (NN) using X-ray
images, and most importantly, to determine whether a
patient has pneumonia or not based on the images fed to
the model. For this concept to be tested, 5856 X-ray
images were used, previously graded by expert physicians.
The results presented in the following sections,
demonstrate the proof-of-concept principle using DL
method for radiological image feature extraction, which
can later be used for x-ray image classification.

II. DATASET ANALYSIS

Images used in this project were taken from the
Kaggle website. Kaggle is an online community of data
scientists, where users can download or publish datasets,
as well as build ML models in a web-based environment
and collaborate with other data scientists. [2]

Dataset is divided into 3 sets: 'train', 'test' and

'validation'. Each of these sets contains subfolders
Pneumonia/Normal. Dataset structure is illustrated in
Figure 1.

Figure 1. Dataset structure

It needs to be emphasized that patients whose images

were used in the dataset are children aged 1-5. Images
were taken in the Guangzhou Women and Children’s
Medical Center in China. Prior to being included in the
Kaggle dataset, images were preprocessed, quality
screened and all low quality scans removed. Furthermore,
they were graded by expert physicians before taking them
into account for the Kaggle upload.

Folder ‘train’ has the size of 1.07 GB, and, as visible

in the Figure 1., 1341 and 3875 images in the subfolders
‘PNEUMONIA’ and ‘NORMAL’, respectively. Folder
‘test’ has the size of 75.3 MB, with 234 images in folder
‘NORMAL’ and 390 images in folder ‘PNEUMONIA’.
Folder ‘val’ is the smallest, having the size of 2.88 MB,

MIPRO 2020/SP 2101

containing 8 images in the folder ‘NORMAL’ and 8
images in the folder ‘PNEUMONIA’. As these statistics
indicate that the dataset structure did not correspond to
the recommended 60%-20%-20% ratio of training-test-
validation data, further dataset balancing could
presumably improve evaluation metrics. Likewise, the
dataset was skewed since there are considerably more
pneumonia than normal lung images. The ratio is
approximately 72% to 28% in favor of pneumonia
images. A 50% to 50% ratio would, in all likelihood,
provide a better model.

III. TECHNOLOGY BEHIND MACHINE LEARNING

ML algorithms can be divided into two categories:

unsupervised and supervised. Unsupervised learning is
known for feature extraction, and supervised learning
builds the relationship between input (e.g. patient traits)
and output (outcome of interest), and is used in predictive
modelling. There are also other types like semi-
supervised and weakly-supervised learning. [3]

The model used in this project was built using

supervised learning that requires „training“ data to be
labeled (tagged with the correct answer). E.g. if there is
known set of columns with a new column to be predicted,
a reference column is needed, for comparing predicted
values with the new column values.

Moreover, the model is built using the CNN, since it
is the most commonly used algorithm today for computer
vision, combining high performance and execution speed.
Figure 2 shows the comparison between various ML
algorithms used in computer vision.

Figure 2. The most popular ML algorithms used for medical

purposes [3]

A. Neural Network architecture
NN is actually a set of algorithms, operating similarly

to the human brain (emulating brain’s cognitive, i.e.
pattern-recognition skills). Just like the human brain
interprets sensory data, NN functions like a black box,
taking inputs like x-ray images and processing them into
one of the multiple outputs, in this case, classes. The
inputs taken are numerical, contained in vectors, into
which all data (e.g. images, sound, text, etc.) entering an
NN must be translated. NN has numerous small units
called neurons, grouped into layers mutually connected
by neurons. NN architecture is depicted in Figure 3,
where the first layer is the input layer which takes inputs
such as images, hidden layers (all the layers between

input and output layer) where computation is done, and
the output layer that produces the result for an input:

Figure 3. Neural network architecture [4]

Neurons are connected with neurons from other layers

through weighted connections. As every weighted
connection has a real-valued number attached, the neuron
actually takes the value of the connected neuron and
multiplies it with the connections weight. That sum of all
connected neurons is called neurons’ bias value. Bias
value is mathematically transformed by putting it through
the activation function, which is then assigned to the
connected neuron in the connected layer. Activation
function ‘decides’ whether a neuron should be activated
or not (based on its weighted sum), thus introducing non-
linearity. [5]

Operations performed by neurons are presented in
Figure 4:

Figure 4. Operation performed by neurons [6]

In this respect, NN can be thought of as a filter which

calculates possibilities, and the challenge is to obtain the
correct neuron values (weights) that would allow the
correct results to be computed. These weights are found
by optimization functions.

B. Convolutional Neural Network architecture
Deep Learning (DL) is a subfield of ML based on

learning multiple levels of representations by making a
hierarchy of features where the higher levels are defined
from the lower levels and the same lower level features
can help in defining many higher level features. [7]

In the same manner, Deep Neural Network (DNN) is
a variation of an NN with more than one hidden layer.
Each of these hidden layers trains on a distinct set of
features based on the previous layer’s output. The more
hidden layers there are in the DNN, the more complex are
the features the nodes (neurons) can recognize, thus
creating a better network.

One of the best DL algorithms that continuously
proves its ability of diagnosing medical images with
substantial performance is CNN. Its main characteristic is

2102 MIPRO 2020/SP

its ability to learn features automatically from domain-
specific images (unlike the classical ML methods). [8]

For example, a CNN was used to detect patients
suffering from COVID-19, using computorized
tomography (CT) images. [9]

CNNs are a class of DNNs, and are designed
specifically for computer vision. Their name is derived
from convolutional layers. The goal of the CNN is to
shrink images into a more easily processed form, without
losing the essential features critical for making
predictions. The aforementioned convolutional layer is
the main building block of the CNN. Although its
parameters include learnable filters with a small receptive
field (similar to the human visual cortex neurons), they
span full input volume depth. [10]
This process is best illustrated if one imagines a flashlight
illuminating only a part of an image, like in Figure 5. It is
important to note that for a computer, an image is nothing
more than a pixel of values:

Figure 5. Convolution operation [11]

Therefore, input image is represented by a 5x5 matrix

on the left. Our kernel/filter is a 3x3 matrix (flashlight)
that shifts along the input matrix (stride value) and
produces a new matrix on the right. Convolutional filters
can be abstractly described as feature identifiers, with
features represented by edges, colors, curves, etc. When
an image is too large, a pooling layer is used which
essentially reduces parameter number, and is represented
in Figure 6:

Figure 6. Max pooling [11]

Another important layer is ReLU layer, using an

activation map to set negative values to zero (or another
number, depending on ReLU type), thus increasing the
nonlinear properties of the decision function. [12]

Hence, at first, convolutional layers detect edges and
curves, but for the network to be able to detect higher
level features (such as eyes or ears - if a human face has
to be detected), a fully-connected (FC) layer is needed. It
takes the inputs and outputs of an N-dimensional vector,
where N is the number of classes to be predicted (in this
case two). Consequently, the FC layer determines which
features correlate the most with a particular class. A
classic CNN architecture would look like this:

Figure 7. CNN architecture [13]

Finally, there is an FC output layer which makes the

final prediction, as depicted in the Figure 7. [13]

IV. BUILDING THE MODEL

Our program code for this project, written in Python

using Jupyter Notebook environment, which will be
described here, can be found on Github. [14]
Model building commences with the libraries
importation. Table I describes the standard libraries used.

TABLE I. IMPORTED STANDARD LIBRARIES

Library Description
os OS operations: reading files, changing or

making a directory, etc.
random generates random numbers
matplotlib library for creating visualizations
cv2 used for reading, displaying images, saving
pandas used for data analysis and modeling
numpy support for arrays and matrices

Then ML libraries like Keras and Tensorflow were

imported.
• TensorFlow - library for DL model production.
• Keras - an API built on TensorFlow, used to

build and test NNs.

As for image preprocessing, images are resized and
casted to float datatype for normalization, labels (0 and 1)
are added subsequently and added to an array. Figure 8.
illustrates this process (pseudo-code):

Figure 8. Image preprocessing (pseudocode)

The data is augmented with ImageDataGenerator
class, usually used for artificial dataset expansion and the
improvement of a model’s ability to generalize what it
has learned to new images. This is achieved through the
use of image rescaling, flipping and viewing at a different
magnification scale (zoom).

MIPRO 2020/SP 2103

Following preprocessing and data augmentation, an
input function is required to return the tensor, i.e. to
instantiate the Keras tensor. In Table II, convolutional
layers and pooling attributes are explained.

TABLE II. IMPORTED CONVOLUTIONAL LAYERS

Function Description
conv2D creates 2D kernel convolved with

input to produce an output. It is a
traditional convolution - filter
sliding through the image

SeparableConv2D variation for faster computing
MaxPool2D used to down-sample an input

(image) and reduce dimensionality.

Figure 9. shows the first convolutional layer:

Figure 9. Instantiating the first convolutional layer

Another four convolutional layers were used, as well

as functions that enable the use of higher learning rates;
which in return accelerates the learning process. This
architecture is in many respects similar to the architecture
advocated by Yann LeCun in the 1990s for his image
classification model (with the exception of LeakyReLU).

Activation function used was PReLU (Parametric

ReLU). As previously mentioned, activation functions are
an important NN feature. They decide whether a neuron
should be activated. 'Activation' is used to determine an
output (like yes/no). ReLU is the most commonly used
activation function, especially in CNNs. Since ReLU is
linear for all positive values and zero for all negative
values:

• model training is computationally cheaper
• convergence is accelerated

By contrast, Leaky ReLU has a small slope for negative
values, instead of zero, which accelerates the training
process. Although Parametric ReLU (PReLU) is a variant
of LeakyReLu, instead of having a predetermined alpha
value of e.g. 0.3, it is learned automatically by NN. The
difference between ReLU, LeakyReLU and PReLU is
illustrated in Figure 10, where ReLU (presented as a blue
line) follows the y=0 axis, LeakyReLU is depicted as a
red line, and PreLU as a yellow line.

Figure 10. ReLU, LeakyReLU and PreLU [15]

Adam, an adaptive learning rate optimization
algorithm designed specifically for training DNNs, was
used as an optimization function for identifying the best
possible weights. [16]

 The Keras library implements numerous functions for

creating and performing various operations with the ML
model. Core layers like Dense, Flatten and Dropout are
imported, and explained in Table III.

TABLE III. IMPORTED CORE LAYERS

Layers Description
Dense Used when association exists between features.

Feeds all outputs from the previous layer to all
of its neurons - each neuron provides one
output to the next layer

Flatten Converts pooled feature map to a single column
that is passed to the FC layer. Flattening
removes all but one dimension. Later it is
passed to the Dense layer.

Dropout A regularization technique, random neurons are
ignored (dropped-out) during training. When a
neuron is dropped, another takes its place,
reducing the network’s sensitivity to neuron
weight and improving generalization

BatchNormalization, which accelerates the learning
process by maintaining the activation standard deviation
close to 1 and the mean activation close to 0, is also used.
Pixel intensity in grayscale images (used in the project)
varies from 0 to 255. Prior to inputting an image to NN,
every image is transformed to an array (1D), hence every
pixel enters one neuron from the input layer. If each
neuron output is passed to a function, every value other
than 0 (i.e. 1 to 255) will be reduced to a number between
0 and 1. Normalizing pixel values before training is
common practice. [17]

The FC layer is the last layer in the model. Overfitting

was reduced by regularization, i.e. L2 regularization,
which forces the weights to take smaller values. In the
output layer, activation is set to 'sigmoid', because the
problem is a binary (two-class) classification. Sigmoid
activation function exists only in the area between 0 and
1 and is therefore suitable for binary classifications.

Upon its completion, the model is compiled and run
using the model.compile() function. Before that, certain
functions are applied during the training, called
callbacks. Callback is a class called at various training
stages. It interacts with the model during the training
process. Two attributes of this class are
ModelCheckpoint, which saves the best model obtained
during training, and ReduceLROnPlateau which monitors
a metric and reduces the learning rate if the metric stops
improving. Callbacks are used because learning rate
reduction is frequently beneficial for ML models.

2104 MIPRO 2020/SP

V. RESULT EVALUATION

Once the model is built, prediction model training

takes place, shown in Figure 11, with some additional
arguments set, e.g. the number of training epochs, etc.

Figure 11. Model training

The results were evaluated using two graphs

presented in Figure 12. The graphs show the accuracy
and loss of the model over a fixed number of epochs.

Figure 12. Accuracy and loss visualization

Figure 13 shows model performance evaluation using

a series of metrics, like accuracy, precision, recall, etc.

Figure 13. Model metrics

In this respect, the model given was concluded to be

converging and classify X-ray images with 90.38%
accuracy. The model’s precision was 87.84%, and a
model producing no false positives would have the
precision of 1, or 100 %. Therefore, a higher number of
false positives is clearly present. There were 53 false
positive results, i.e. 53 people diagnosed with a disease
were actually healthy. Recall lies at 98.21%, indicating a

very low number of false negative diagnoses – only
seven. F1 score is 91.68%, which is usually considered an
excellent result.

The model could definitely be enhanced by further
adjustment of parameters, layers etc. Since train accuracy
was 94.45% and test accuracy 90.38%, there was
probably some model overfitting. As techniques like
ReduceLRonPlateau, dropouts and L2 regularization
(which prevent overfitting) were used, other techniques,
like training the model with more data or dataset
balancing (with respect to the number of images) could
be applied.

VI. COMPARING ACTIVATION FUNCTIONS
PERFORMANCE

In this section, the difference between applying

different rectified activation functions in CNN, namely,
between ReLU, Leaky ReLU and PReLU, will be
presented. Since ReLU is one of the most frequently used
activation functions for ML applications, LeakyReLU can
usually be found in the best Kaggle competition projects
and PReLU is a variant of LeakyReLU. Performance
differences were established using different activation
functions. Comparison is given in Table IV.

Table IV. Activation function comparation

Activation
function

Training
accuracy

Test
accuracy

Training
loss

Test
loss

ReLU 0.9460 0.8750 0.1952 0.5904
LeakyReLU
(α = 0.3) 0.9378 0.8894 0.2106 0.2640

LeakyReLU
(α = 30.0) 0.9372 0.8702 0.2296 0.2754

PReLU 0.9445 0.9038 0.2088 0.3339

A total of four models implementing different

activation functions were built. The same preprocessing,
regularization techniques, layers and the same number of
epochs were used in all models. Therefore, the only
difference between them was the usage of different
rectified activations. Their performance was compared
and the best model chosen for the final model.

As anticipated, the results were extremely similar,

with PReLU achieving the best result. Other types of
rectified activations were found to outperform ReLU in
the image classification task, achieving similar
performance as models created by Xu, Wang et al.,
described in 'Empirical Evaluation of Rectified
Activations in Convolution Network' on CIFAR-100 and
CIFAR-10 networks. [18]

Since PReLU outperformed the other 2 functions,

achieving the highest accuracy and satisfactory loss, the
activation function used in the project was PReLU.
Hence, although ReLU is the most commonly used
function, better alternatives exist, depending on the
dataset.

MIPRO 2020/SP 2105

Since there exist considerably larger datasets than the

one used here, the performances of these functions on
them are still to be investigated. However, the results
suggest that this issue is worth pursuing in the future.

VII. COMPARING RESULTS WITH THE REFERENCE MODEL

To check the performance of the created model, it had
to be compared with a reference model. As there are
neither ongoing nor completed Kaggle competitions for
this dataset, this type of comparison was impossible. The
reference model was found online. A Kaggle user used a
CNN based on residual NN, or ResNet. A residual NN is
an NN, the architecture of which is based on constructs
known from pyramidal cells in the cerebral cortex.
ResNet is typically implemented with double or triple
layer architecture using a ReLu activation function and
batch normalizations. In this reference model, the data
were augmented in a different manner and trained using a
different DL library - fastai. The exact same dataset was
used.

After preprocessing images in the similar manner as

in our project, and conducting a 12-epoch training, the
aforementioned reference model achieved the accuracy of
90.86 %, as seen in Figure 14: [19]

Figure 14. Reference model performance

Since the original model created in the project

achieved the accuracy of 90.38%, it was found to be
satisfactory and achieve acceptable metrics.

CONCLUSION
In this paper, a medical image classification algorithm
based on neural networks was presented. This project
shows the true power of machine learning in real-life use.
Since the model clearly has satisfying metrics such as
accuracy, precision, F1 score etc., it could, with further
parameter adjustment (which would resolve the issue of
overfitting), be used in a real-life environment. The
findings of published papers that neural networks can be
of exceptional help in healthcare, have been repeated and
confirmed.

REFERENCES
[1] ZhiFei Lai, HuiFang Deng, “Medical Image Classification Based

on Deep Features Extracted by Deep Model and Statistic Feature
Fusion with Multilayer Perceptron”, 12 September 2018.;.

[2] Paul Mooney, “Chest X-Ray Images (Pneumonia)”, online,
accessed 5/25/2020, March 2018,
https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia,

[3] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, et
al., “Artificial intelligence in healthcare: past, present and future,
SVN – Stroke and Vacular Neurology”, 0:e000101., DOI:
10.1136/svn-2017-000101, June 2017.

[4] Sai Kambampati, “What’s New in Core ML 2”, online, accessed
5/25/2020, June 2018, https://www.appcoda.com/coreml2/,

[5] Armaan Merchant, “Neural Networks Explained”, online,
accessed 5/23/2020, December 2018,
https://medium.com/datadriveninvestor/neural-networks-
explained-6e21c70d7818

[6] Arthur Arnx, “First neural network for beginners explained (with
code)”, online, accessed 5/25/2020, January 2019,
https://towardsdatascience.com/first-neural-network-for-
beginners-explained-with-code-4cfd37e06eaf

[7] TM Capital, “The Next Generation of Medicine: Artificial
Intelligence and Machine Learning”, November 2017.

[8] Asmaa Abbas, Mohammed M. Abdelsamea, and Mohamed
Medhat Gaber, “Classification of COVID-19 in chest X-ray
images usingDeTraC deep convolutional neural network”,
Mathematics Department, Faculty of Science, Assiut University,
Assiut, Egypt , April 1, 2020.

[9] Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, et al. “A deep
learning algorithm using CT images to screen for Corona Virus
Disease (COVID-19)”, medRxiv.2020.

[10] Adit Deshpande, “A Beginner's Guide To Understanding
Convolutional Neural Networks”, online, accessed 5/23/2020, July
2016,
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-
Understanding-Convolutional-Neural-Networks/,

[11] Moazzem Hossain , “Easy way to understand Convolutional
Neural Network”, online, accessed 5/23/2020, April 2019,
https://medium.com/@_moazzemhossain/easy-way-to-understand-
convolutional-neural-network-its-easy-d9b7c0c5adb3

[12] V.G. Ivancevic. Darryn J Reid, Michael J Pilling, “Mathematics of
Autonomy, Mathematical Methods for Cyber-Physical-Cognitive
Systems”, Defence Science & Technology Group, Australia, 2017

[13] Camron Godbout, “TensorFlow in a Nutshell — Part Three: All
the Models”, online, accessed 5/25/2020, October 2016,
https://medium.com/hackernoon/tensorflow-in-a-nutshell-part-
three-all-the-models-be1465993930

[14] Ayperos23, “Github (ayperos23)- pneumonia classification”,
online, accessed 5/25/2020, May 2020,
https://github.com/ayperos23/ML-pneumonia-classification,

[15] Danqing Liu , “A practical guide to ReLU”, online, accessed
5/23/2020, November 2017, https://medium.com/@danqing/a-
practical-guide-to-relu-b83ca804f1f7

[16] Algorithmia, “Introduction to Optimizers”, online, accessed
5/23/2020, May 2018, https://algorithmia.com/blog/introduction-
to-optimizers,

[17] Cory Maklin, “Batch Normalization Tensorflow Keras Example”,
online, accessed 5/23/2020, June 2019,
https://towardsdatascience.com/backpropagation-and-batch-
normalization-in-feedforward-neural-networks-explained-
901fd6e5393e

[18] Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li,” Empirical
Evaluation of Rectified Activations in Convolution Network”,
arXiv:1505.00853v2, November 2015

[19] Yuan Tian, “Detecting Pneumonia with Deep Learning “, online,
accessed 5/25/2020, June 2018,
https://becominghuman.ai/detecting-pneumonia-with-deep-
learning-3cf49b640c14

2106 MIPRO 2020/SP

