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Abstract – A microwave interferometry based coplanar 

waveguide sensor is proposed for cell dynamic process 

monitoring applications. Combining the ease of microfluidics 

integration and impedance modeling from coplanar 

waveguide with high sensitivity and wide frequency range 

from interferometer structure, the designed setup has proved 

its potential for biological applications. Based on 

characteristic of interferometer and sensor modeling, the 

algorithm for extraction of the material under test complex 

permittivity from the S-parameters changes has been 

developed. Measurement and calculation of 2 mg/ml yeast 

cell suspension have been carried out to validate the setup, 

which agreed well with reference data in literature. 

Furthermore, monitoring of yeast cell sediment process was 

performed to lay the groundwork for future cell growth 

monitoring.  
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I. INTRODUCTION 

Cell suspension measurement and cell growth 
monitoring are of great importance for both academic and 
industries in biology, biochemistry, and pharmaceutical 
fields [1], [2]. Among the fast developing and widely used 
bio-sensing techniques, such as optical, mechanical and 
chemical methods, electrical detection and property 
extraction of cell cultures have raised significant interests 
for label-free, noninvasive and high-sensitivity biosensor 
designs [3], [4]. One major method is to characterize the 
material-under-test (MUT) with its frequency dependent 
permittivity, a physical representation of (di)electric 
polarization [5]. Biogenic liquid’s permittivity contains 
valuable biological information, especially for dielectric 
dispersions at microwave and millimeter wave frequencies. 
However, most of the work studying cell dynamic 
properties so far mainly focus on kHz frequency range [6], 
[7] and are often limited on sensitivities. 

Many efforts, for example, resonator structures, have 
been explored to improve electrical biosensor’s sensitivity 
[8], but its frequency range is confined to the resonance 
point. In order to measure broad frequency range complex 
permittivity of MUT with high sensitivity, interferometric 
dielectric spectroscopy has proved its potential for bio-
material characterization in recent years [9]. Due to its 
flexibility regarding sensing structures, many microwave 
topologies, e.g. coplanar waveguide (CPW), with easy 
integration of miniaturized microfluidics have led to broad 

frequency range and high sensitivity measurements of 
liquid mixtures [10-12], cell cultures [13-14],  single cells 
[15] and even microwave heating at the micro-meter scale 
[11], [16-17]. And yet, few researches have been carried 
out on the cell culture monitor, especially, the sediment 
process.  

As a capability demonstration of microwave 
interferometry techniques in measuring and monitoring cell 
behavior in suspensions, this work illustrates the 
application of a CPW-based biosensor to extract the 
dielectric dispersion of yeast cell suspensions and their 
sediment process at 12-18 GHz. Section II describes the 
measurement setup, the sensing principle with CPW sensor 
design, and the permittivity extraction method. In section 
III, the measurements are conducted with yeast cell to water 
concentration of 1 g / 50 ml and 1 g / 500 ml. Finally, the 
paper is concluded in the last section. 

II. MEASUREMENT SETUP AND SENSING PRINCIPLE 

A. Measurement Setup 

Schematic of the system is shown in Fig. 1. Two 90-
degree couplers (Quadrature Hybrid (QH), SigaTek, 
SQ16506) split and combine the sensing signal (e.g. 
15 GHz) from Vector Network Analyzer (VNA) into two 
branches: the sensor channel and the reference/tuning 
channel with 180-degree phase difference, aiming to form 
destructive interference. The reference channel is 
connected to mechanically controlled Attenuator (Narda 
4799) to compensate the attenuation and Phase Shifter (PS, 
ARRA 9428A) to finely tune the phase difference between 
these two branches. The sensor channel consists of a 
tapered CPW sensing structure to adapt to miniaturized 
microfluidics (Fig. 2).  Interference null is achieved as S21 

 

Figure 1.  Schematic of measurement setup. 
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on VNA, when these two channels are turned to similar 
attenuation but around 180-degree phase difference. 

B. Sensing Principle and Sensor Design 

Fig. 2 illustrates the cross-section (left), top views 
(middle) and impedance model (right) of the CPW sensing 
structure for the measurements. The CPW is made of 
Duroid 5880 with copper thickness of 18 µm. And to make 
it biocompatible, a 20 µm polydimethylsiloxane (PDMS) 
layer is applied in the sensing area, which is indicated with 
red dashed rectangular. At last, the PDMS microfluidic 
well used to hold MUT is attached on top. CPW-based 
sensor was chosen because of its ease of fabrication and 
connection to the measurement system and high sensitivity 
to changes of MUT above. The depth of microfluidic well 
on top of the CPW sensing area are designed relatively deep 
(h1 = 5 mm) compared to the gap of CPW (g = 4 mm) to 
guarantee sufficient height of MUT, so that the detected 
signal change is caused mainly by MUT, and also reduce 
errors introduced by manual filling and evaporation. The 
width of well, lMUT, is 1 mm, resulting an effective volume 
of 7 µl. 

The attenuator and PS are tuned to obtain small S21, 
inducing better destructive interference, at a certain 
frequency f0 = 15 GHz. The smaller S21 was tuned, the 
higher Q-factor the system will achieve, thus, larger 
sensitivity. Fig. 3 displays the system’s S-parameters in 
frequency domain after tuning S21 to below -70 dB and its 
Q-factor has reached 104.  

Similar to the permittivity extraction described in [18], 
with corresponding S11 and f0, the complex permittivity of 
MUT, 

 𝜀 =  𝜀′ − 𝑗𝜀′′ () 

can be calculated from the signal propagation constant:  

 𝛾𝑀𝑈𝑇 =  (𝛼𝑐 + 𝛼𝑐) + 𝑗𝛽 () 

of the CPW sensing area filled with MUT. Specifically, 
here we apply: 

 
𝑆11(𝑀𝑈𝑇)

𝑆11(𝐶𝐴𝐿)
=

𝑍𝑙_𝑀𝑈𝑇−𝑍0

𝑍𝑙_𝑀𝑈𝑇+𝑍0
×

𝑍𝑙_𝐶𝐴𝐿+𝑍0

𝑍𝑙_𝐶𝐴𝐿−𝑍0
 () 

 
𝑆21(𝑀𝑈𝑇)

𝑆21(𝐶𝐴𝐿)
=

exp (−𝛾𝑀𝑈𝑇×𝑙𝑀𝑈𝑇)

exp (−𝛾𝐶𝐴𝐿×𝑙𝐶𝐴𝐿)
 () 

among which the subscripts MUT and CAL, refer to 
“material under test” and “calibration liquid” respectively; 
And lMUT/CAL is the physical length of the sensing area 
sections; Zl_MUT and Z0 are impedances marked in Fig.2. 
Deionized water is used as calibration liquid to help 
eliminate the signal transfer functions of all other sensor 
and system components except for the sensing area section. 

With the obtained signal propagation constant of the 
sensing area filled with MUT (𝛾𝑀𝑈𝑇 ), described in [19], 
Zl_MUT/CAL is determined by the term “tanh(-γMUT × lMUT)”. 
Thus, the real and imaginary part of MUT permittivity can 
be acquired. Then, repeating the same calculations for each 
frequency point. 

III. MEASUREMENTS AND DISCUSSIONS 

A. Yeast Cell Suspension Measurement 

To validate the design, yeast cell suspension with 

concentration of 2 mg/ml is tested first. The measurement 

was conducted under room temperature of 16.7°C with 

setup schematic illustrated in Fig. 1 and guided by the 

following steps:  

• Firstly, after connecting all the components and 
sensor, deionized water was injected into the 
PDMS well with a pipette. 

• Secondly, tuning attenuator and PS alternately at 
15 GHz in frequency domain sweep mode until S21 
reaches below -70 dB for higher sensitivity and 
recording the S-parameters. 

• Thirdly, mixing the Bruggeman dry bakery yeast 
with deionized water and rotating the container for 
5 mins to fully suspend the yeast cells. 

• Finally, carefully and completely removing 
deionized water inside the well and refilling it with 
2 mg/ml yeast cell suspension and recording the S-
parameters again. 

Fig. 4 shows the extracted real and imaginary permittivity 
of 2 mg/ml yeast cell suspension with error bars. The 
extracted permittivity correlates well with reference data in 
[20], validating the sensor’s capability of sensitive and 
accurate permittivity measurements. 

 

Figure 3. S-parameters of the system with S21 (15 GHz) tuned 

below -70 dB, Q-factor = 104. 

 

Figure 2. The cross-section (left), top views (middle) and impedance 

model (right) of the CPW sensing structure, where w = 0.6 mm, g = 

0.4 mm, t = 18 µm (copper), h1 = 20 µm (thin PDMS layer), h2 = 1.6 mm, 

h3 = 5 mm (MUT), 𝜀1  = 2.69 (PDMS), 𝜀2  = 2.2 (Duroid 5880), 𝜀3 = 

permittivity of MUT. 
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B. Yeast Cell Sediment Monitoring 

Since the density of yeast cell is slightly larger than 
deionized water, the sediment process will happen right 
after filling the PDMS well with yeast cell suspension. 
Accumulating at the bottom of CPW sensor, the extracted 
permittivity will decrease for both real and imaginary parts 
(Fig. 5). From the sediment monitoring measurement, we 
can see that for 2 mg/ml yeast cell suspension, the cells will 
settle down in about 23 minutes with a volume of 7 µl. 

C. Discussions 

The error of extracted permittivity is considered 
relatively large especially for imaginary part. A few 
methods can be applied to improve its accuracy; firstly, 
making a better fixation of the system to eliminate the 
environmental noises, since the system is very sensitive to 
mechanical movements; secondly, providing temperature 
control of the MUT to reduce the error caused by 
temperature difference, noted that the measurement 
temperature in [18] is at 18.5°C while this work is carried 
out at 16.7°C; and finally, coming up with more accurate 
permittivity extraction algorithm, taking the reflection of 
signal between different components into consideration. 
Our next step also includes cell growth monitoring on thin 
layer of cell culture mediums, such as luria agar, lysogeny 
broth and collagen gel, broadening the horizon of 
microwave sensors on biological applications. 

IV. CONLUSION 

This paper presents a broadband, high sensitivity 
microwave measurement setup for monitoring cell dynamic 
properties. The system is based on microwave 
interferometry structure and combined with CPW sensor to 
enable adaptation to microfluidics and extraction of 

permittivity. The setup was validated by 2 mg/ml yeast cell 
suspension measurement with good agreement compared to 
reference data in [20]. Then, it was applied to sediment 
process monitoring, providing valuable information about 
cell settlement for future cell growth monitoring 
experiments. 
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Figure 4. Extracted permittivity of 2 mg/ml yeast cell suspension: (a) 
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